Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T05:46:15.302Z Has data issue: false hasContentIssue false

Mechanism of Surfactant Removal from Ordered Nanocomposite Silica Thin Films by Deep-UV Light Exposure

Published online by Cambridge University Press:  01 February 2011

Andrew M. Dattelbaum
Affiliation:
Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 and
Meri L. Amweg
Affiliation:
Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 and Department of Applied Science, University of California, Davis, CA 95616
Julia D. Ruiz
Affiliation:
Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 and
Laurel E. Ecke
Affiliation:
Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 and
Andrew P. Shreve
Affiliation:
Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 and
Atul N. Parikh
Affiliation:
Department of Applied Science, University of California, Davis, CA 95616
Get access

Abstract

In recent years, methods have been developed for the generation of complex ordered nanocomposite materials through organic templating of inorganic structures. One approach involves preparation of composite materials by an evaporation induced self-assembly process involving organization of organic surfactants and formation of inorganic silica from soluble precursors. Recently, we have shown that deep-UV light (185–254nm) is efficient at removing the surfactant microphase for a routine production of well-ordered mesoporous silica thin films. Here we probe the evolution of surfactant removal from nanocomposite thin film silica mesophases as a function of deep-UV exposure using a combined application of FTIR and single wavelength ellipsometry. Taken together, these data indicate that surfactant removal occurs in a step-wise fashion with the formation of oxidized intermediates prior to complete removal of the surfactant from the thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Corma, A., Chem. Rev. 97, 2373 (1997).Google Scholar
b) Schüth, F., Schmidt, W., Adv. Mater. 14, 629 (2002).Google Scholar
2. Lu, Y. F., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W. L., Guo, Y. X., Soyez, H., Dunn, B., Huang, M. H., Zink, J. I., Nature 1997, 389, 364.Google Scholar
3. Wirnsberger, G., Scott, B. J., Stucky, G. D. Chem. Com. 119 (2001).Google Scholar
4. Keene, M. T. J., Denoyel, R., Llewellyn, P. L., Chem. Comm. 20, 2203 (1998).Google Scholar
5. Hozumi, A., Yokogawa, Y., Kameyama, T., Hiraku, K., Sugimura, H., Takai, O., Okido, M., Adv. Mater. 12, 985 (2001).Google Scholar
6. Clark, T. Jr, Ruiz, J. D., Fan, H. Y., Brinker, C. J., Swanson, B. I., Parikh, A. N., Chem. Mater. 12, 3879 (2000).Google Scholar
7. Vig, J. R., J. Vac. Sci. Technol. A 3, 1027 (1985).Google Scholar
8. Dattelbaum, A. M., Amweg, M. L., Yee, C., Ecke, L. E., Shreve, A. P., and Parikh, A. N., Nano letters, 3, 719 (2003).Google Scholar
9. Moon, D. W., Kurokawa, A., Ichimura, S., Lee, H. W., Jeon, E. C., J. Vac. Sci. Technol. A, 17, 150 (1999).Google Scholar
10. a) Brinkmann, M., Chan, V. Z. H., Thomas, E. L., Lee, V. Y., Miller, R. D., Hadjichristidis, N., Avgeropoulos, A., Chem. Mater. 13, 967 (2001).Google Scholar
b) Soto-Oviedo, M. A., De Paoli, M. A., Polym. Degrad. Stab. 76, 219 (2002).Google Scholar
11. Azzam, R. M. A., and Bashara, N. M., Ellipsometry and Polarized Light (Elsevier Science, 1987).Google Scholar