Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T15:33:31.006Z Has data issue: false hasContentIssue false

Effect of Hot Band Annealing on Microstructure of Semi-Processed Non-Oriented Low Carbon Electrical Steels

Published online by Cambridge University Press:  01 February 2011

Emmanuel J. Gutiérrez
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Saltillo Coahuila, P.O Box 663, México 25900.
Castañeda
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Saltillo Coahuila, P.O Box 663, México 25900.
Armando Salinas Rodriguez
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Saltillo Coahuila, P.O Box 663, México 25900.
Get access

Abstract

Effects of hot band annealing on the final microstructure and magnetic properties of cold rolled and annealed non-oriented grain Si-Al electrical steel strips are investigated. Microstructures are characterized using optical and scanning electron microscopy and magnetic properties are determined using a vibrating sample magnetometer. It is shown that annealing of hot rolled bands at temperatures between 800 and 850 °C causes rapid decarburization and development of a microstructure consisting of large columnar ferrite grains free of secondary particles. This microstructure leads, after cold rolling and a fast annealing treatment, to large grain microstructures similar to those observed in production scale, fully processed strips. It is observed that the final grain size increases with the final annealing temperature, leading to a significant improvement of the magnetic properties. Therefore, hot band annealing technology can be an attractive alternative processing route for the manufacture of non-oriented grain low carbon Si-Al processed electrical steel strips.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kubota, Takeshi, Mizokami, Masato, Fujikura, Masahiro, Ushigami, Yoshiyuki, Electrical Steel Sheet for Eco-Design of Electrical Equipment, Nippon Steel, 81, 53 (2000).Google Scholar
2. Honda, Atsuhito, Obata, Yoshio, Okamura, Susumu, History and Recent Development of Non-Oriented Electrical Steel, Kaisaki steel, 39, 13 (1998).Google Scholar
3. Park, Jong Tae and Kim, Jae Kwan, Recrystallization, Grain growth and Texture Evolution in Non-Oriented Electrical Steels, Posco Steel 10, 26 (2007).Google Scholar
4. Fischer, O. and Schneider, J. Influence of Deformation Process on the Improvement of Non-oriented Electrical Steel, J. Magn. and Magn. Mater, 254, 302 (2003).Google Scholar
5. Takanohashi, Rubens and Jose, Fernando, Landgraf, Gomes, Effect of hot-band grain size and intermediate annealing on magnetic properties and texture of non-oriented silicon steels, J. Magn. and Magn. Mater. 304, 608 (2006).Google Scholar
6. Paolinellia, Sebastião C. and da Cunha, Marco A., Development of a new generation of high permeability non-oriented silicon steels, J. Magn. and Magn. Mater, 304, 596 (2006).Google Scholar
7. Hou, Chun-Kan, Effect of Hot Band Annealing Temperature on the Magnetic Properties of Low-carbon Electrical Steels, ISIJ International, 36, 563 (1996).Google Scholar
8. McGannon, Harold E., The Making Shaping and Treating of Steel, ninth edition (United States Steel Corporation), Pittsburgh, Pennsylvania, 1161, (1970).Google Scholar
9. Kováč, F., Džubinský, M. and Sidor, Y., J. Magn. and Magn. Mater. 269, 333 (2003); Mater. Sci. and Eng. 385, 449 (2004).Google Scholar