Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T13:41:08.947Z Has data issue: false hasContentIssue false

Formation of Nanostructured Alloys by Liquid Phase Spinodal Decomposition

Published online by Cambridge University Press:  17 March 2011

W.H. Guo
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P.R. China
H.W. Kui
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P.R. China
Get access

Abstract

A molten Pd82Si18 alloy, free of potent heterophase impurities and enclosed in a fused silica tube of conical shape, was quenched in water. Four regions classified according to their microstructures can be distinguished. They are: region I, amorphous; region II, a mixture of an amorphous nanostructure and a nanocrystal; region III, a mixture of two kinds of nanocrystals; region IV, spinodal networks; and region V, conventional eutectic structure. The detailed microstructures in each region are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Turnbull, D., Met. Trans. B12, 217 (1981).Google Scholar
2. Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H., Roskilde: Riso National Laboratory, 1981, p. 15.Google Scholar
3. Birringer, R., Gleiter, H., Klein, H.P., and Marquardt, P., Phys. Lett. A102, 365 (1984).Google Scholar
4. Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45, 4019 (1997).Google Scholar
5. Schneider, S., Thiyagaragan, P., and Johnson, W.L., Appl. Phys. Lett. 68, 493 (1996).Google Scholar
6. Weertman, J.R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R., and Swygenhoven, H. Van, MRS Bulletin, 24(2), 44 (1999).Google Scholar
7. Koch, C.C., Morris, D.G., Lu, K., and Inoue, A., MRS Bulletin, 24(2), 54 (1999).Google Scholar
8. Herzer, G., in Nanomagnetism, ed. Hernando, A., Kluwer, Dordrecht, 1993, p. 111.Google Scholar
9. Yuen, C.W. and Kui, H.W., J. Mater. Res. 13, 3034 (1998).Google Scholar
10. Yuen, C.W. and Kui, H.W., J. Mater. Res. 13, 3043 (1998).Google Scholar
11. Lee, K.L. and Kui, H.W., J. Mater. Res. 14, 3653 (1999).Google Scholar
12. Guo, W.H., Chua, L.F., Leung, C.C., and Kui, H.W., J. Mater. Res. 15, 1605 (2000).Google Scholar
13. Guo, W.H. and Kui, H.W., Acta Mater. 48, 2117 (2000).Google Scholar
14. Cahn, J., Trans. Met. Soc. AIME 242, 166 (1968).Google Scholar
15. Kui, H.W., Greer, A.L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984).Google Scholar
16. Inoue, A., Nishiyama, N., and Matsuda, T., Mater. Trans. Japan. Inst. Metals 37, 181 (1996).Google Scholar
17. Chen, H.S., Acta Metall. 22, 1505 (1974).Google Scholar
18. Hong, S.Y., Guo, W.H., and Kui, H.W., J. Mater. Res. 14, 3668 (1999).Google Scholar
19. Lee, K.L. and Kui, H.W., J. Mater. Res. 14, 3663 (1999).Google Scholar
20. Turnbull, D., Contemp. Phys. 10, 473 (1969).Google Scholar