Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T15:16:19.067Z Has data issue: false hasContentIssue false

Carbon Nanotube-Induced Planarization of Conjugated Polymers in Solution

Published online by Cambridge University Press:  01 February 2011

Jian Chen
Affiliation:
Zyvex Corporation, 1321 North Plano Road, Richardson, Texas 75081, USA.
Rajagopal Ramasubramaniam
Affiliation:
Zyvex Corporation, 1321 North Plano Road, Richardson, Texas 75081, USA.
Haiying Liu
Affiliation:
Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, USA
Get access

Abstract

The understanding of the conformational interaction between conjugated polymers and carbon nanotubes in solution is essential to develop the applications of carbon nanotubes, particularly conjugated polymer-carbon nanotube hybrid materials. The visible absorption spectroscopic study shows that curved carbon nanotube surfaces can induce the planarization of individual conjugated polymers such as poly(p-phenyleneethynylene)s and poly(3-alkylthiophene)s in solution. The impact of nanotube surface quality on the interaction between carbon nanotubes and conjugated polymers is investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dalton, A. B., Stephan, C., Coleman, J. N., McCarthy, B., Ajayan, P. M., Lefrant, S., Bernier, P., Blau, W. J., and Byne, H. J., J. Phys. Chem. B 104, 10012 (2000).Google Scholar
2. Star, A., Stoddart, J. F., Steuerman, D., Diehl, M., Boukai, A., Wong, E. W., Yang, X., Chung, S. –W., Choi, H., and Heath, J. R., Angew. Chem. Int. Ed. 40, 1721 (2001).Google Scholar
3. McCarthy, B., Coleman, J. N., Czerw, R., Dalton, A. B., , M. in Panhuis, het, Maiti, A., Drury, A., Bernier, P., Nagy, J. B., Lahr, B., Byrne, H. J., Carroll, D. L., and Blau, W. J., J. Phys. Chem. B 106, 2210 (2002).Google Scholar
4. Star, A., Liu, Y., Grant, K., Ridvan, L., Stoddart, J. F., Steuerman, D. W., Diehl, M. R., Boukai, A., and Heath, J. R., Macromolecules 36, 553, (2003).Google Scholar
5. Chen, J., Liu, H., Weimer, W. A., Halls, M. D., Waldeck, D. H., and Walker, G. C., J. Am. Chem. Soc. 124, 9034 (2002); see also supporting information therein.Google Scholar
6. Ramasubramaniam, R., Chen, J., and Liu, H., Appl. Phys. Lett. 83, 2928 (2003).Google Scholar
7. Kymakis, E., Alexandou, I., and Amaratunga, G. A. J., Synth. Met. 127, 59 (2002).Google Scholar
8. Kymakis, E., and Amaratunga, G. A. J., Appl. Phys. Lett. 80, 112 (2002).Google Scholar
9. O'Connell, M. J., Boul, P., Ericson, L. M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K. D., and Smalley, R. E., Chem. Phys. Lett. 342, 265 (2001).Google Scholar
10. Bunz, U. H. F., Chem. Rev. 100, 1605 (2000).Google Scholar
11. Chen, R. J., Zhang, Y., Wang, D., and Dai, H., J. Am. Chem. Soc. 123, 3838 (2001).Google Scholar
12. Zhao, J., Lu, J. P., Han, J., and Yang, C. –K., Appl. Phys. Lett. 82, 3746 (2003).Google Scholar
13. Miteva, T., Palmer, L., Kloppenburg, L., Neher, D., and Bunz, U. H. F., Macromolecules 33, 652 (2000).Google Scholar
14. Bunz, U. H. F., Acc. Chem. Res. 34, 998 (2001).Google Scholar
15. Wu, X., Chen, T. –A., and Rieke, R. D., Macromolecules 29, 7671 (1996).Google Scholar
16. McCullough, R. D., Adv. Mater. 10, 1 (1998).Google Scholar
17. Yamamoto, T., Komarudin, D., Arai, M., Lee, B. –L., Suganuma, H., Asakawa, N., Inoue, Y., Kubota, K., Sasaki, S., Fukuda, T., and Matsuda, H., J. Am. Chem. Soc. 120, 2047 (1998).Google Scholar
18. Shibaev, P. V., Schaumburg, K., Bjornholm, T., and Norgaard, K., Synth. Met. 97, 97 (1998).Google Scholar
19. Kim, J., and Swager, T. M., Nature 411, 1030 (2001).Google Scholar
20. Chen, J., Ramasubramaniam, R., and Liu, H., manuscript in preparation.Google Scholar
21. Hamon, M. A., Itkis, M. E., Niyogi, S., Alvaraez, T., Kuper, C., Menon, M., and Haddon, R. C., J. Am. Chem. Soc. 123, 11292 (2001).Google Scholar
22. Chen, J., Dyer, M. J., and Yu, M. –F., J. Am. Chem. Soc. 123, 6201 (2001).Google Scholar
23. Hu, H., Zhao, B., Itkis, M. E., and Haddon, R. C., J. Phys. Chem. B 107, 13838 (2003).Google Scholar
24. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., and Chen, J., Chem. Phys. Lett. 303, 467 (1999).Google Scholar
25. Chen, J., and Weimer, W. A., J. Am. Chem. Soc. 124, 758 (2002).Google Scholar
26. Rao, S. G., Huang, L., Setyawan, W., and Hong, S. H., Nature 425, 36 (2003).Google Scholar