Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-15T19:54:00.272Z Has data issue: false hasContentIssue false

In vitro and whole-plant magnitude and cross-resistance characterization of two imidazolinone-resistant sugarbeet (Beta vulgaris) somatic cell selections

Published online by Cambridge University Press:  12 June 2017

Terry R. Wright
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1324
Donald Penner*
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1324
*
Corresponding author. pennerd@pilot.msu.edu

Abstract

Acetolactate synthase (ALS)-inhibiting herbicide carryover in soil can severely affect sugarbeets grown in the year(s) following application. Two newly developed imidazolinone-resistant (IMI-R) sugarbeet somatic cell selections (Sir-13 and 93R30B) were examined for magnitude of resistance and extent of cross-resistance to other classes of ALS inhibitors and compared to a previously developed sulfonylurea-resistant (SU-R) selection, Sur. In vitro shoot culture tests indicated Sir-13 resistance was specific to imidazolinone (IMI) herbicides at approximately a 100-fold resistance compared to the sensitive control sugarbeet. Sur was 10,000-fold resistant to the sulfonylurea (SU) herbicide, chlorsulfuron, and 40-fold resistant to the triazolopyrimidine sulfonanilide (TP) herbicide, flumetsulam, but not cross-resistant to the IMI herbicides. 93R30B was selected for IMI-R from a plant homozygous for the SU-R allele, Sur, and displayed similar in vitro SU-R and TP-R as Sur, but also displayed a very high resistance to various IMI herbicides (400- to 3,600-fold). Compared to the sensitive control, Sir-13 was 300- and > 250-fold more resistant to imazethapyr and imazamox residues in soil, respectively. Response by whole plants to postemergence herbicide applications was similar to that observed in shoot cultures. Sir-13 exhibited > 100-fold resistance to imazethapyr as well as imazamox, and 93R30B showed > 250-fold resistance to both herbicides. 93R30B showed great enough resistance to imazamox to merit consideration of imazamox for use as a herbicide in these sugarbeets. Sir-13 showed a two- to threefold higher level of resistance in the homozygous vs. heterozygous state, indicating that like most ALS-inhibitor resistance traits, it was semidominantly inherited.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, P. C. and Georgeson, M. 1989. Herbicide-tolerant mutants of corn. Genome 31: 994999.Google Scholar
Bernasconi, P., Woodworth, A. R. II Rosen, A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270: 1738117385.Google Scholar
Chaleff, R. S. and Ray, T. B. 1984. Herbicide-resistant mutants from robacco cell cultures. Science 223: 11481151.CrossRefGoogle ScholarPubMed
Creason, G. L. and Chaleff, R. S. 1988. A second mutation enhances resistance of a tobacco mutant to sulfonylurea herbicides. Theor. Appl. Genet. 76: 177182.Google Scholar
Dexter, A. G. 1994. History of sugarbeet (Beta vulgaris) herbicide rate reduction in North Dakota and Minnesota. Weed Technol. 8: 334337.CrossRefGoogle Scholar
Frederickson, D. R. and Shea, P. J. 1986. Effect of soil pH on degradation, movement, and plant uptake of chlorsulfuron. Weed Sci. 34: 328332.CrossRefGoogle Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40: 670676.Google Scholar
Hart, S. E., Saunders, J. W., and Penner, D. 1992. Chlorsulfuron-resisrant sugarbeet: cross resistance and physiological basis of resistance, Weed Sci. 40: 378383.Google Scholar
Hart, S. E., Saunders, J. W., and Penner, D. 1993. Semidominant nature of monogenic sulfonylurea herbicide resistance in sugarbeet (Beta vulgaris). Weed Sci. 41: 317324.Google Scholar
Hartnett, M. E., Chui, C.-F., Falco, S. C., Knowlton, S., Mauvais, C. J., and Mazur, B. J. 1991. Molecular characterization of sulfonylurea resistant ALS genes. Pages 343353 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resisrance in Weeds and Crops. Oxford, Great Britain: Butterworth-Heneman.Google Scholar
Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211: 266271.Google Scholar
Haughn, G. W. and Somerville, C. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet. 204: 430434.CrossRefGoogle Scholar
Haughn, G. W. and Somerville, C. R. 1990. A mutation causing imidazoline resistance maps to the Csrl locus of Arabidopsis thaliana . Plant Physiol. 92: 10811085.CrossRefGoogle Scholar
Johnson, D. H. and Talbert, R. E. 1993. Imazaquin, chlorimuron, and fomesafen may injure rotational vegetables and sunflower (Helianthus annuus). Weed Technol. 7: 573577.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1994. Soybean (Glycine max) and rotational crop response to PPI chlorimuron, clomazone, imazaquin, and imazethapyr. Weed Technol. 8: 224230.CrossRefGoogle Scholar
Lee, K. Y., Townsend, J., Tapperman, J., Black, M., Chui, C.-F., Mazur, B., Dunsmuir, P., and Bedbrook, J. 1988. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7: 12411248.Google Scholar
Mallory-Smith, C. A., Thill, D. C., Dial, M. J., and Zemetra, R. S. 1990. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol. 4: 787790.Google Scholar
Mourad, G., Haughn, G., and King, J. 1994. Intragenic recombination in the CSR1 locus of Arabidopsis . Mol. Gen. Genet. 243: 178184.CrossRefGoogle ScholarPubMed
Mourad, G. and King, J. 1992. Effect of four classes of herbicides on growth and acetolactate-synthase activity in several variants of Arabidopsis thaliana . Planta 188: 491497.Google Scholar
Moyer, J. R., Esau, R., and Kozub, G. C. 1990. Chlorsulfuron persistence and response of nine rotational crops in alkaline soils of southern Alberta. Weed Technol. 4: 543548.CrossRefGoogle Scholar
Renner, K. A. and Powell, G. E. 1991. Response of sugarbeet (Beta vulgaris) to herbicide residues in soil. Weed Technol. 5: 622627.Google Scholar
Saunders, J. W., Acquaah, G., Renner, K. A., and Doley, W. P. 1992. Monogenic dominant sulfonylurea resistance in sugarbeet from somatic cell selection. Crop Sci. 32: 13571360.CrossRefGoogle Scholar
Schweizer, E. E. and Dexter, A. G. 1987. Weed control in sugarbeets (Beta vulgaris) in North America. Rev. Weed Sci. 3: 113133.Google Scholar
Sebastian, S. A., Fader, G. M., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29: 14031408.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9: 218227.Google Scholar
Shribbs, S. M., LyBecker, D. W., and Schweitzer, E. E. 1990. Bioeconomic weed management models for sugarbeet (Beta vulgaris) production. Weed Sci. 38: 436444.CrossRefGoogle Scholar
Starke, R. J. and Renner, K. A. 1996. Velvetleaf (Abutilon theophrasti) and sugarbeet (Beta vulgaris) response to triflusulfuron and desmedipham plus phenmedipham. Weed Technol. 10: 121126.Google Scholar
Stougaard, R. N., Shea, P. J., and Martin, A. R. 1990. Effect of soil type and pH on adsorption, mobility, and efficacy of imazaquin and imazethapyr. Weed Sci. 38: 6773.CrossRefGoogle Scholar
Walsh, J. D., DeFelice, M. S., and Sims, B. D. 1993. Soybean (Glycine max) herbicide carryover to grain and fiber crops. Weed Technol. 7: 625632.Google Scholar
Winter, S. R. and Wiese, A. F. 1982. Economical control of weeds in sugarbeets (Beta vulgaris). Weed Sci. 30: 620623.Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in the ALS gene. Plant Physiol. 111: 1353.Google Scholar
Wright, T. R. and Penner, D. 1998. Cell selection and inheritance of imidazolinone resistance in sugarbeet (Beta vulgaris). Theor. Appl. Genet. In press.Google Scholar