Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T07:08:42.457Z Has data issue: false hasContentIssue false

Fabrication of Transparent Conductive Thin Film Electrodes Based on Ag Nanowire on Transparent Substrates Using the Spray Method for Photovoltaic Applications

Published online by Cambridge University Press:  22 May 2012

Gaël Giusti*
Affiliation:
Laboratoire des Matériaux et du Génie Physique, CNRS - Grenoble INP, 3 parvis Louis Néel 38016 Grenoble, France
Daniel Langley
Affiliation:
Laboratoire des Matériaux et du Génie Physique, CNRS - Grenoble INP, 3 parvis Louis Néel 38016 Grenoble, France Laboratoire de Physique des Solides, Interfaces et Nanostructures- Département de Physique, Université de Liège - Allée du 6 Août 17, B-4000 Liège, Belgique
Carmen Jiménez
Affiliation:
Laboratoire des Matériaux et du Génie Physique, CNRS - Grenoble INP, 3 parvis Louis Néel 38016 Grenoble, France
Etienne Puyoo
Affiliation:
Laboratoire des Matériaux et du Génie Physique, CNRS - Grenoble INP, 3 parvis Louis Néel 38016 Grenoble, France
Anusha Muthukumar
Affiliation:
Laboratoire des Matériaux et du Génie Physique, CNRS - Grenoble INP, 3 parvis Louis Néel 38016 Grenoble, France Crystal Growth Center, Anna University – Chennai, 600025India
Estelle Appert
Affiliation:
Laboratoire des Matériaux et du Génie Physique, CNRS - Grenoble INP, 3 parvis Louis Néel 38016 Grenoble, France Laboratoire de Science et Ingénierie des Matériaux et Procédés, CNRS - Grenoble INP, 1130 rue de la Piscine, 38402 Saint-Martin d’Hères, France.
Vincent Consonni
Affiliation:
Laboratoire des Matériaux et du Génie Physique, CNRS - Grenoble INP, 3 parvis Louis Néel 38016 Grenoble, France
Daniel Bellet
Affiliation:
Laboratoire des Matériaux et du Génie Physique, CNRS - Grenoble INP, 3 parvis Louis Néel 38016 Grenoble, France
*
*Corresponding author e-mail: gael.giusti@grenoble-inp.fr
Get access

Abstract

Materials with a remarkable combination of high electrical conductivity as well as optical transparency are playing a key role for opto-electronic devices. In addition to these specific electro-optical properties, transparent conductive materials should, for many applications, be lightweight, flexible, low-cost, non toxic and compatible with mass production techniques. In these regards, the use of Ag nanowire (Ag NW) networks appears to be a promising approach. In this study, Ag NW electrodes were fabricated by a novel spray injection method. The number of pulses was varied resulting in different network morphologies. Coatings were systematically characterised structurally, electrically and optically via SEM, four-point probe measurements and spectrophotometry, respectively. Semi uniform layers of nanowires with large haze coefficients have been obtained over large areas. Thermal annealing was shown to increase the nanowire film conductance resulting in 16 Ω/sq surface resistance and up to 73% maximal total transmittance. Films showed average optical transparencies superior to that of ITO over the 250-2500 nm range. Finally, encapsulation of Ag NWs within a matrix of ZnO nanoparticles greatly enhanced the thermal stability of these networks.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gruner, G., J. Mater. Chem. 16, 3533 (2006).CrossRefGoogle Scholar
Kaempgen, M., Duesberg, G.S. and Roth, S. Appl. Surf. Sci. 252, 425 (2005).CrossRefGoogle Scholar
Eda, G., Fanchini, G., Chhowalla, M., Nat. Nanotechnol. 3, 270 (2008).CrossRefGoogle Scholar
Wu, J.B., Agrawal, M., Becerril, H.A., Bao, Z.N., Liu, Z.F., Chen, Y.S. and Peumans, P., ACS Nano 4, 43 (2009).CrossRefGoogle Scholar
Lee, J-Y., Connor, S.T., Cui, Y. and Peumans, P., Nano Lett. 8 689 (2008).CrossRefGoogle Scholar
Madaria, A.R., Kumar, A. and Zhou, C., Nanotechnology 22, 245201 (2011).CrossRefGoogle Scholar
Lu, Y.C. and Chou, K.S., Nanotechnology 21, 215707 (2010).CrossRefGoogle Scholar
McPeak, K.M. and Baxter, J.B., Cryst. Growth Des. 9, 4538 (2009).CrossRefGoogle Scholar
Haacke, G., J. Appl. Phys. 47, 4086 (1976).CrossRefGoogle Scholar
Stjerna, B. and Granqvist, C.G., Appl. Phys. Lett. 57, 1989 (1990).CrossRefGoogle Scholar