Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-17T22:01:56.049Z Has data issue: false hasContentIssue false

Late Quaternary carbon cycling responses to environmental change revealed by multi-proxy analyses of a sediment core from an upland lake in southwest China

Published online by Cambridge University Press:  20 January 2017

Enlou Zhang*
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Weiwei Sun
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China University of Chinese Academy of Sciences, Beijing 100049, China
Ming Ji
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Cheng Zhao
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Bin Xue
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Ji Shen
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
*
*Corresponding author.Email Address:elzhang@niglas.ac.cn

Abstract

Stable carbon isotope (δ13C) values of organic matter in lacustrine sediments are commonly used to trace past changes in terrestrial and aquatic carbon cycles. Here we use a high-resolution, well-dated δ13C record from Lake Tengchongqinghai (TCQH) in southwestern China, together with other proxy indices, to reconstruct the paleolimnological history over the past 18.5 ka. Organic matter in the sediments of Lake TCQH is derived predominately from aquatic macrophytes. The lacustrine primary productivity is closely linked with lake-level changes affected by variations in the strength of the Asian summer monsoon and modified by evapotranspiration. Similar to lake sediments world-wide, a ca. − 3‰ shift occurred in the δ13C values of Lake TCQH in response to the significant increase in atmospheric CO2 concentration during the last deglaciation. In the Holocene, the availability of dissolved CO2 in the lake water of Lake TCQH was determined by variations in hydraulic energy: low water turbulence creates a thick, stagnant boundary layer around aquatic plants, which will restrict the rate of CO2 diffusion and result in more positive δ13C values of aquatic plants. In contrast, significant water turbulence dramatically reduces the boundary layer thickness leading to more negative δ13C values of aquatic plants.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballantyne, A.P., Lavine, M., Crowley, T.J., Liu, J., and Baker, P.B. Meta-analysis of tropical surface temperatures during the Last Glacial Maximum. Geophysical Research Letters 32, (2005). L05712CrossRefGoogle Scholar
Battarbee, R., Grytnes, J.-A., Thompson, R., Appleby, P., Catalan, J., Korhola, A., Birks, H.J.B., Heegaard, E., and Lami, A. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28, (2002). 161179.CrossRefGoogle Scholar
Battin, T.J., Luyssaert, S., Kaplan, L.A., Aufdenkampe, A.K., Richter, A., and Tranvik, L.J. The boundless carbon cycle. Nature Geoscience 2, (2009). 598600.CrossRefGoogle Scholar
Berger, A., and Loutre, M.-F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.CrossRefGoogle Scholar
Blaauw, M., and Andres Christen, J. Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Analysis 6, (2011). 457474.CrossRefGoogle Scholar
Carsten, J.S., and Stephen, E.C. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep Sea Research Part I: Oceanographic Research Papers 48, (2001). 789810.Google Scholar
Chen, X., Chen, F., Zhou, A., Huang, X., Tang, L., Wu, D., Zhang, X., and Yu, J. Vegetation history, climatic changes and Indian summer monsoon evolution during the Last Glaciation (36,400–13,400 cal yr BP) documented by sediments from Xingyun Lake, Yunnan, China. Palaeogeography Palaeoclimatology Palaeoecology 410, (2014). 179189.CrossRefGoogle Scholar
Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., and Melack, J. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, (2007). 172185.CrossRefGoogle Scholar
Cook, C.G., Jones, R.T., Langdon, P.G., Leng, M.J., and Zhang, E. New insights on Late Quaternary Asian palaeomonsoon variability and the timing of the Last Glacial Maximum in southwestern China. Quaternary Science Reviews 30, (2011). 808820.CrossRefGoogle Scholar
Cook, C.G., Leng, M.J., Jones, R.T., Langdon, P.G., and Zhang, E. Lake ecosystem dynamics and links to climate change inferred from a stable isotope and organic palaeorecord from a mountain lake in southwestern China (ca. 22.6–10.5 cal ka BP). Quaternary Research 77, (2012). 132137.CrossRefGoogle Scholar
Das, B., Vinebrooke, R.D., Sanchez-Azofeifa, A., Rivard, B., and Wolfe, A.P. Inferring sedimentary chlorophyll concentrations with reflectance spectroscopy: a novel approach to reconstructing historical changes in the trophic status of mountain lakes. Canadian Journal of Fisheries and Aquatic Sciences 62, (2005). 10671078.CrossRefGoogle Scholar
Dearing, J.A. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Paleolimnology 18, (1997). 114.CrossRefGoogle Scholar
Digerfeldt, G., Olsson, S., and Sandgren, P. Reconstruction of lake-level changes in lake Xinias, central Greece, during the last 40,000 years. Palaeogeography Palaeoclimatology Palaeoecology 158, (2000). 6582.CrossRefGoogle Scholar
Dong, X., Anderson, N.J., Yang, X., chen, X., and Shen, J. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Global Change Biology 18, (2012). 22052217.CrossRefGoogle Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, (2005). 7186.CrossRefGoogle Scholar
Fellerhoff, C., Voss, M., and Wantzen, K. Stable carbon and nitrogen isotope signatures of decomposing tropical macrophytes. Aquatic Ecology 37, (2003). 361375.CrossRefGoogle Scholar
Finney, B.P., and Johnson, T.C. Sedimentation in Lake Malawi (East Africa) during the past 10,000 years: a continuous paleoclimatic record from the southern tropics. Palaeogeography Palaeoclimatology Palaeoecology 85, (1991). 351366.CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, (2003). 17371739.CrossRefGoogle Scholar
Fogel, M., and Cifuentes, L. Isotope Fractionation during Primary Production. Engel, M., and Macko, S. Organic Geochemistry. (1993). Springer, US. 7398.Google Scholar
France, R.L. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124, (1995). 307312.CrossRefGoogle Scholar
Günther, F., Witt, R., Schouten, S., Mäusbacher, R., Daut, G., Zhu, L., Xu, B., Yao, T., and Gleixner, G. Quaternary ecological responses and impacts of the Indian Ocean Summer Monsoon at Nam Co, Southern Tibetan Plateau. Quaternary Science Reviews 112, (2015). 6677.CrossRefGoogle Scholar
Gupta, A.K., Anderson, D.M., and Overpeck, J.T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, (2003). 354357.CrossRefGoogle ScholarPubMed
Hillaire-Marcel, C., Aucour, A.-M., Bonnefille, R., Riollet, G., Vincens, A., and Williamson, D. 13C/Palynological evidence of differential residence times of organic carbon prior to its sedimentation in East African Rift Lakes and peat bogs. Quaternary Science Reviews 8, (1989). 207212.CrossRefGoogle Scholar
Kudrass, H.R., Hofmann, A., Doose, H., Emeis, K., and Erlenkeuser, H. Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k.y. Geology 29, (2001). 6366.2.0.CO;2>CrossRefGoogle Scholar
Lamb, A.L., Leng, M.J., Umer Mohammed, M., and Lamb, H.F. Holocene climate and vegetation change in the Main Ethiopian Rift Valley, inferred from the composition (C/N and δ13C) of lacustrine organic matter. Quaternary Science Reviews 23, (2004). 881891.CrossRefGoogle Scholar
Lambiase, J.J. Hydraulic control of grain-size distributions in a macrotidal estuary. Sedimentology 27, (1980). 433446.CrossRefGoogle Scholar
Leavitt, P. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology 9, (1993). 109127.CrossRefGoogle Scholar
Leng, M.J., and Marshall, J.D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, (2004). 811831.CrossRefGoogle Scholar
Liu, J., , H., Negendank, J., Mingram, J., Luo, X., Wang, W., and Chu, G. Periodicity of Holocene climatic variations in the Huguangyan Maar Lake. Chinese Science Bulletin 45, (2000). 17121717.CrossRefGoogle Scholar
Liu, E., Shen, J., Zhang, E., Wu, Y., and Yang, L. A geochemical record of recent anthropogenic nutrient loading and enhanced productivity in Lake Nansihu, China. Journal of Paleolimnology 44, (2010). 1524.CrossRefGoogle Scholar
Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27, (1997). 213250.CrossRefGoogle Scholar
Meyers, P.A., and Horie, S. An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeography Palaeoclimatology Palaeoecology 105, (1993). 171178.CrossRefGoogle Scholar
Monnin, E. Atmospheric CO2 concentrations over the last glacial termination. Science 291, (2001). 112114.CrossRefGoogle ScholarPubMed
Monnin, E., Steig, E.J., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer, B., Stocker, T.F., Morse, D.L., Barnola, J.-M., Bellier, B., Raynaud, D., and Fischer, H. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth and Planetary Science Letters 224, (2004). 4554.CrossRefGoogle Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, (2002). 162165.CrossRefGoogle ScholarPubMed
Müller, P.J. CN ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochimica et Cosmochimica Acta 41, (1977). 765776.CrossRefGoogle Scholar
Nara, F.W., Watanabe, T., Kakegawa, T. et al. Biological nitrate utilization in south Siberian lakes (Baikal and Hovsgol) during the Last Glacial period: the influence of climate change on primary productivity. Quaternary Science Reviews 90, (2014). 6979.CrossRefGoogle Scholar
Porter, S.C. Snowline depression in the tropics during the Last Glaciation. Quaternary Science Reviews 20, (2000). 10671091.CrossRefGoogle Scholar
Prokopenko, A.A., Williams, D.F., Karabanov, E.B., and Khursevich, G.K. Response of Lake Baikal ecosystem to climate forcing and pCO2 change over the last glacial/interglacial transition. Earth and Planetary Science Letters 172, (1999). 239253.CrossRefGoogle Scholar
R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. (2013). Google Scholar
Rasmussen, S.O. A new Greenland ice core chronology for the last glacial termination. Journal of Geological Research: Atmospheres 111, (2006). Google Scholar
Rau, G.H., Takahashi, T., and Des Marais, D. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341, (1989). 165 CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., and Friedrich, M. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, (2013). 18691887.CrossRefGoogle Scholar
Rost, B., Riebesell, U., Burkhardt, S., and Sültemeyer, D. Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography 48, (2003). 5567.CrossRefGoogle Scholar
Rost, B., Zondervan, I., and Wolf-Gladrow, D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Marine Ecology Progress Series 373, (2008). 227237.CrossRefGoogle Scholar
Saraswat, R., Lea, D.W., Nigam, R., Mackensen, A., and Naik, D.K. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections. Earth and Planetary Science Letters 375, (2013). 166175.CrossRefGoogle Scholar
Schippers, P., Lürling, M., and Scheffer, M. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters 7, (2004). 446451.CrossRefGoogle Scholar
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Köhler, P., Joos, F., Stocker, T.F., Leuenberger, M., and Fischer, H. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, (2012). 711714.CrossRefGoogle ScholarPubMed
Shen, J. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: a review and synthesis of lacustrine sediment archives. Chinese Science Bulletin 58, (2013). 1731.CrossRefGoogle Scholar
Shen, J., Yang, L., Yang, X., Matsumoto, R., Tong, G., Zhu, Y., Zhang, Z., and Wang, S. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province China. Science in China Series D-Earth Sciences 48, (2005). 353363.CrossRefGoogle Scholar
Sifeddine, A., Meyers, P., Cordeiro, R., Albuquerque, A., Bernardes, M., Turcq, B., and Abrão, J. Delivery and deposition of organic matter in surface sediments of Lagoa do Caçó (Brazil). Journal of Paleolimnology 45, (2011). 385396.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. IPCC, 2007: Climate change 2007: The physical science basis, Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge.Google Scholar
Street-Perrott, F.A., Huang, Y., Perrott, R.A., Eglinton, G., Barker, P., Khelifa, L.B., Harkness, D.D., and Olago, D.O. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278, (1997). 14221426.CrossRefGoogle ScholarPubMed
Street-Perrott, F.A., Ficken, K.J., Huang, Y., and Eglinton, G. Late Quaternary changes in carbon cycling on Mt. Kenya, East Africa: an overview of the δ13C record in lacustrine organic matter. Quaternary Science Reviews 23, (2004). 861879.CrossRefGoogle Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Röthlisberger, R., Peder Steffensen, J., and Vinther, B.M. The Greenland ice core chronology 2005, 15–42 ka. part 2: comparison to other records. Quaternary Science Reviews 25, (2006). 32583267.CrossRefGoogle Scholar
Tareq, S.M., Kitagawa, H., and Ohta, K. Lignin biomarker and isotopic records of paleovegetation and climate changes from Lake Erhai, southwest China, since 18.5 ka BP. Quaternary International 229, (2011). 4756.CrossRefGoogle Scholar
Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., Dillon, P., Finlay, K., Fortino, K., Knoll, L.B., Kortelainen, P.L., Kutser, T., Larsen, S., Laurion, I., Leech, D.M., McCallister, S.L., McKnight, D.M., Melack, J.M., Overholt, E., Porter, J.A., Prairie, Y., Renwick, W.H., Roland, F., Sherman, B.S., Schindler, D.W., Sobek, S., Tremblay, A., Vanni, M.J., Verschoor, A.M., von Wachenfeldt, E., and Weyhenmeyer, G.A. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54, (2009). 22982314.CrossRefGoogle Scholar
Verschoor, A.M., Van Dijk, M.A., Huisman, J.E.F., and Van Donk, E. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshwater Biology 58, (2013). 597611.CrossRefGoogle Scholar
Verspagen, J.M.H., Van de Waal, D.B., Finke, J.F., Visser, P.M., and Huisman, J. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecology Letters 17, (2014). 951960.CrossRefGoogle ScholarPubMed
Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.L., Steffensen, J.P., Svensson, A., Olsen, J., and Heinemeier, J. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research, [Atmospheres] 111, (2006). D13102Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., and Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, (2001). 23452348.CrossRefGoogle ScholarPubMed
Wang, Y., Liu, X., and Herzschuh, U. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews 103, (2010). 135153.CrossRefGoogle Scholar
Wang, S., Lu, H., Han, J., Chu, G., Liu, J., and Negendank, J.F.W. Palaeovegetation and palaeoclimate in low-latitude southern China during the Last Glacial Maximum. Quaternary International 248, (2012). 7985.CrossRefGoogle Scholar
Wang, L., Mackay, A.W., Leng, M.J., Rioual, P., Panizzo, V.N., Lu, H., Gu, Z., Chu, G., Han, J., and Kendrick, C.P. Influence of the ratio of planktonic to benthic diatoms on lacustrine organic matter δ13C from Erlongwan maar lake, northeast China. Organic Geochemistry 54, (2013). 6268.CrossRefGoogle Scholar
Wang, Q., Yang, X., Anderson, N.J., Zhang, E., and Li, Y. Diatom response to climate forcing of a deep, alpine lake (Lugu Hu, Yunnan, SW China) during the Last Glacial Maximum and its implications for understanding regional monsoon variability. Quaternary Science Reviews 86, (2014). 112.CrossRefGoogle Scholar
Wolfe, B.B., Edwards, T.W.D., and Aravena, R. Changes in carbon and nitrogen cycling during tree-line retreat recorded in the isotopic content of lacustrine organic matter, western Taimyr Peninsula, Russia. The Holocene 9, (1999). 215222.CrossRefGoogle Scholar
Wolfe, A., Vinebrooke, R., Michelutti, N., Rivard, B., and Das, B. Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. Journal of Paleolimnology 36, (2006). 91100.CrossRefGoogle Scholar
Xiao, X., Haberle, S.G., Yang, X., Shen, J., Han, Y., and Wang, S. New evidence on deglacial climatic variability from an alpine lacustrine record in northwestern Yunnan Province, southwestern China. Palaeogeography Palaeoclimatology Palaeoecology 406, (2014). 921.CrossRefGoogle Scholar
Zhang, W., Cui, Z., Feng, J., Yi, C., and Yang, J. Late Pleistocene glaciation of the Hulifang Massif of Gongwang mountains in Yunnan Province. Journal of Geographical Sciences 15, (2005). 448458.CrossRefGoogle Scholar
Zhang, E., Tang, H., Cao, Y., Langdon, P., Wang, R., Yang, X., and Shen, J. The effects of soil erosion on chironomid assemblages in Lugu Lake over the past 120 years. International Review of Hydrobiology 98, (2013). 165172.CrossRefGoogle Scholar
Zhang, E., Sun, W., Zhao, C., Wang, Y., Xue, B., and Shen, J. Linkages between climate, fire and vegetation in southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition. Palaeogeography Palaeoclimatology Palaeoecology 435, (2015). 8694.CrossRefGoogle Scholar