Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T11:06:08.762Z Has data issue: false hasContentIssue false

Flux Synthesis of New Multinary Bismuth Chalcogenides and their Thermoelectric Properties

Published online by Cambridge University Press:  10 February 2011

Duck-Young Chung
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Kyoung-Shin Choi
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Paul W. Brazis
Affiliation:
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208
Carl R. Kannewurf
Affiliation:
Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Get access

Abstract

We present the synthesis and structure of the new chalcogenide compounds, Rb0.5Bi1.83Te3, APb2Bi3Te7 (A = Cs, Rb), K1.25Pb3.50Bi7.25Se15 and A1+xPb4−2xSb7+xSe15 (A = K, Rb). The layered structures of the first two telluride compounds are related to each other in a very interesting fashion. These compounds are n-type metallic conductors and solid solutions with Se and Sb have also been synthesized. K1.25Pb3.50Bi7.25Se15 and its Sb analogs have a complex three-dimensional structure composed of NaCl- and Bi2Te3-type building units. The thermal stability, melting behavior, electrical conductivity and thermopower of these compounds are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Ainsworth, R. S.; Scanlon, W. W. Phys. Rev., 1958, 111, 1029. (b) Goldsmid, H. J. Thermoelectric Refrigeration; Pion Ltd.: London, 1986. (c) Yim, W.; Rosi, F. D. Solid State Electron., 1972, 15, 1121. (d) Rosi, F. D.; Ramberg, F.G. Thermoelectricity, Egli, P. M., Ed.; John Wiley & Sons: New York, 1960. (e) Jeon, H. -H.; Ha, H. -P.; Hyun, D. -B.; Shim, J. -D. J. Phys. Chem. Solids, 1991, 4, 579–585.Google Scholar
2. (a) Rowe, D. M.; Bhandari, C.M. Modem thermoelectrics; Holt, Rinehart, and Winston: London, 1983. (b) Ravich, Y. I.; Efimova, B. A.; Smirnov, I.A. Semiconducting Lead Chalcogenides; Stilbans, L. S., Ed.; Plenum Press: New York, 1970. (c) Parker, S. G.; Johnson, R. E. "Preparation and Properties of (Pb,Sn)Te" in Preparation and Properties of Solid State Materials, Vol. 6; Wilcok, W. R., Ed.; Dekker: New York, 1981.Google Scholar
3. Thermoelectric figure of merit; ZT= (σ.S2/κ).T, where a σ is electrical conductivity, S thermoelectric power, ic thermal conductivity, and T temperature.Google Scholar
4. (a) Litaka, Y.; Nowacki, W. Acta Cryst., 1962, 15, 691–698 (b) Takeuchi, Y.; Takagi, J. Proc. Japan Acad., 1974, 50, 222–225.Google Scholar
5. Agaev, K. A.; Semiletov, S. A. Soviet Phys.-Crystallogr., 1968, 13, 201–203.Google Scholar
6. Zhkova, T. B.; Zaslavskii, A. I. Soviet Phys.-Crystallogr., 1971, 16, 796800.Google Scholar
7. Srikrishnan, T.; Nowacki, W. Z. Z. Kristallogr. 1974, 140, 114–136.CrossRefGoogle Scholar
8. Agaev, K. A.; Talybov, A.G.; Semiletov, S. A. Kristallografiya, 1966, 11, 736740.Google Scholar
9. Petrov, I. I.; Imamov, R. M. Soviet Phys.-Crystallogr., 1969, 14, 593596.Google Scholar
10. Takeuchi, Y.; Takagi, J.; Yamanaka, T. Proc. Japan Acad., 1974, 50, 317–321.Google Scholar
11. Takeuchi, Y.; Takagi, J. Proc. Japan Acad., 1974, 50, 7679.Google Scholar
12. (a) Golovanova, N. S.; Zlomanov, V. P.; Tannaeva, O. I Inorg. Mater., 1983, 19, 669–672. (b) Zhkova, T. B.; Zaslavskii, A. I. J Strut. Chem., 1970, 11, 423–428.Google Scholar
13. Otto, H. H.; Strunz, H. N. Jb. Miner. Abh., 1968, 108, 1–9.Google Scholar
14. Tilley, R. J. D.; Wright, A. C. J. Solid State Chem., 1986, 65, 45–62.Google Scholar
15. Takagi, J.; Takeuchi, Y. Acta Cryst., B, 1972, 28, 649–651.Google Scholar
16. Takeuchi, Y.; Takagi, J. Proc. Japan Acad., 1974, 50, 76–79.Google Scholar
17. Palatnik, L. S.; Konovalov, O. M.; Gladkikh, N. T.; Kolesnikov, V. N. Phys. Metal Metallogr., 1961, 15, 3639.Google Scholar
18. Kapinskij, O. G Acta Crystallogr. A, 1978, 34A, S80.Google Scholar
19. Kanatzidis, M.G.; Sutorik, A. C. Prog. Inorg. Chem., 1995, 43, 151265.Google Scholar
20. Chung, D.-Y.; Choi, K-.S; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M.G. Chem. Mater., 1997, 9, 30603071.CrossRefGoogle Scholar
21. (a) Kanatzidis, M.G.; DiSalvo, F. J. Naval Research Reviews, 1996, 4, 1422. (b) reference 20Google Scholar
22. Kanatzidis, M.G.; McCarthy, T. J.; Tanzer, T. A.; Chen, L. -H.; lordanidis, L.; Hogan, T.; Kannewurf, C. R.; Uher, C.; Chen, B. Chem. Mater., 1996, 8, 14651474.Google Scholar
23. (a) Slack, G. A. “New Materials and Performance Limits for Thermoelectric Cooling” in CRC Handbook of Thermoelectrics; Rowe, D. M., Ed.; CRC Press: Boca Raton, 1995, pp. 407–440. (b) Slack, G. A. Solid State Physics; Ehrenreich, H.; Seitz, F.; Turnbull, D., Ed.; Academic: New York, 1997, 34, 1Google Scholar