Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T06:35:42.899Z Has data issue: false hasContentIssue false

Growth of (GaAs)1−x (Si2)x Metastable Alloys using Migration-Enhanced Epitaxy

Published online by Cambridge University Press:  16 February 2011

T. Sudersena Rao
Affiliation:
NTT Basic Research Laboratories, Tokyo 180, Japan.
Y. Horikoshi
Affiliation:
NTT Basic Research Laboratories, Tokyo 180, Japan.
Get access

Abstract

Epitaxial (GaAs)1−x (Si2)x metastable alloys have been grown on GaAs (100) substrates using Migration-Enhanced Epitaxy in the composition range of 0<x<0.25. The lattice constant a0 of the alloys was found to decrease with increasing Si content from 0.56543nm at x=0 to 0.5601nm at x=0.25. Double-crystal x-ray diffraction rocking curve measurements and cross-sectional transmission electron microscopy studies made on a 10 period (GaAs)1−x(Si2)x/GaAs strained layer superlattice indicated sharp and abrupt interfaces. High crystalline quality GaAs has been grown on Si substrates using (GaAs)0.80(Si2)0.20/GaAs strained layer superlattices as buffer layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alferov, Zh. I., Zhingarev, M. Z.,Konnikov, S. G.,Mokan, I. I., Ulin, V.P., Umanskii, V.E. and Yavich, B.S.: Sov. Phys. Semicond. 16, 532 (1982).Google Scholar
2. Kolm, C., Kilin, S. A. and Averbach, B. L.: Phys. Rev 108, 965 (1957).CrossRefGoogle Scholar
3. Shah, S. I., Greene, J. E., Abels, L. L., Yan, Q. and Raccah, P. M.: J. Cryst. Growth 83, 3 (1987).CrossRefGoogle Scholar
4. Baird, R. J., Holloway, H., Tamor, M. A., Hurley, M. D. and Vassell, W. C.: J.Appl. Phys. 69,(1), 226 (1991).CrossRefGoogle Scholar
5. Burnham, R. D., Holonyak, N. Jr., Hsich, K. C., Kaliski, R. W., Nain, D. W., Thornton, R. L. and Paoli, T. L.: Appl. Phys. Lett. 48, 800 (1986).CrossRefGoogle Scholar
6. Stolz, W., Naganuma, M. and Horikoshi, Y.: Jpn. J. Appl. Phys. 22 (1988) L283.CrossRefGoogle Scholar
7. Noreika, A. J. and Francombe, M. H.: J. Appl. Phys. 48, 3690 (1974).CrossRefGoogle Scholar
8. Mei, D. H., Kim, Y. W., Lubben, D., Robertson, I. M. and Greene, J. E.: Appl. Phys. Lett. 55, 2649 (1989).CrossRefGoogle Scholar
9. Horikoshi, Y., Kawashima, M. and Yamaguchi, H.: Jpn. J. Appl. Phys. 25, L868 (1986).CrossRefGoogle Scholar
10. Horikoshi, Y., Kawashima, M. and Yamaguchi, H.: Jpn. J. Appl. Phys. 22, 169 (1988).CrossRefGoogle Scholar
11. Horikoshi, Y. and Kawashima, M.: Jpn. J. Appl. Phys. 28, 200 (1989).CrossRefGoogle Scholar
12. Cullity, B.D.: Elements of X-ray Diffraction (Addesion-Wesley, Minto Prk, CA, 1978.)Google Scholar