Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T21:54:55.023Z Has data issue: false hasContentIssue false

Testing Techniques for Mechanical Characterization of Nanostructured Materials

Published online by Cambridge University Press:  01 February 2011

Carl C. Koch
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695
Ronald O. Scattergood
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695
K. Linga Murty
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695
Ramesh K. Guduru
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695
Gopinath Trichy
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695
Koteswararao V. Rajulapati
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Testing methods are reviewed that can be applied to the small sample sizes which result from many of the processing routes for preparation of nanocrystalline materials. These include the measurement of elastic properties on small samples; hardness, with emphasis on nanoindentation methods; the miniaturized disk bend test (MDBT); the automated ball indentation test (ABI); the shear punch test; and the use of subsize compression and tensile samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weertman, J. R. in Nanostructured materials: processing, properties and applications, ed. Koch, C. C. (William Andrews Publishing, Norwich, NY, 2002) pp. 397 Google Scholar
2. Koch, C. C., Script Mater. 49, 657 (2003).Google Scholar
3. Gleiter, H., Progress in Mater. Sci. 33, 223 (1989).Google Scholar
4. Weertman, J. R. in Nanostructured materials: processing, properties and applications, ed. Koch, C. C. (William Andrews Publishing, Norwich, NY, 2002) pp. 410.Google Scholar
5. Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).Google Scholar
6. Sanders, P. G., Eastman, J. A., and Siegel, R. W., J. Mater. Res. 45, 4019 (1997).Google Scholar
7. Legros, M., Elliot, B. R., Rittner, M. N., Weertman, J. R., and Hemker, K. J., Phil. Mag. A, 80, 1017 (2000).Google Scholar
8. Hoffman, M. and Birringer, R., Mater Sci. Engr. A, 202, 18 (1995).Google Scholar
9. Mallow, T. R. and Koch, C. C., Acta Mater. 46, 6459 (1998).Google Scholar
10. Oliver, W. C. and Pharr, G. M., J. Mater. Res., 7, 1564 (1992).Google Scholar
11. Shen, T. D., Koch, C. C., Tsui, T. Y., and Pharr, G. M., J. Mater. Res., 10, 2892 (1995).Google Scholar
12. Berry, B. S. and Pritchet, W. C., J. Appl. Phys., 44, 3122 (1973).Google Scholar
13. Sakai, S., Tanimoto, H., and Mizubayashi, H., Acta Mater. 47, 211 (1999).Google Scholar
14. Lynnworth, L. C., Papadakis, E. P., and Fowler, K. A., Int. Ado. Nondest. Testing, 5, 71 (1977).Google Scholar
15. Wolfenden, A., Metall. Trans. A, 11A, 1233 (1980).Google Scholar
16. Bonetti, E., Scipione, G., Frattini, R., Enzo, S., and Schiffin, L., J. Appl. Phys., 79, 7537 (1996).Google Scholar
17. Weertman, J. R. in Nanostructured materials: processing, properties and applications, ed. Koch, C.C. (William Andrews Publishing, Norwich, NY, 2002) pp. 412415.Google Scholar
18. Morris, D. G. in Mechanical behavior of nanostructured materials, Mater. Sci. Foundation, edited by Magini, M. and Wohlbier, F. H., (Trans Tech Publ. 2, 1998) pp. 4247.Google Scholar
19. Koch, C. C. and Narayan, J. R., MRS Symp. Proc., 634, 5.1.1 (2000).Google Scholar
20. Van Vliet, K. J., Li, J., Zhu, T., Yip, S., and Suresh, S., Phys. Rev. B, 67, 104105 (2003).Google Scholar
21. Chen, J., Wang, W., Qian, L. H., and Lu, K., Scripta Mater. 49, 645 (2003).Google Scholar
22. Huang, F. S., Hamilton, M. L., and Wire, G. L., Nucl. Technol., 57, 234 (1982).Google Scholar
23. Lucas, G. E., Metall. Trans., 21A, 1105 (1990).Google Scholar
24. Meyers, D. E., Chen, F. C., Zhang, J., and Ardell, A. J., J. Test. Eval., 21, 263 (1993).Google Scholar
25. Choudry, M. S., Eastman, J. A., DiMelfi, R. J., and Dollar, M., Scripta Mater., 37, 843 (1997).Google Scholar
26. Smith, T. R., NanoStruct. Mater., 5, 337 (1995)‥Google Scholar
27. Hoffman, M. and Birringer, R., Acta Mater., 44, 2729 (1996).Google Scholar
28. Hoffman, M. and Birringer, R., Mater. Sci. and Engr. A, A202, 18 (1995).Google Scholar
29. Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., and Koch, C. C., Acta Mater., 500, 3527 (2002).Google Scholar
30. Zhang, X., Wang, H., Scattergood, R. O., Narayan, J., and Koch, C. C., Mater. Sci. Engr. A, A344, 175 (2003).Google Scholar
31. Haggag, F. M., “Small specimen test techniques applied to nuclear reactor vessel thermal annealing and plant life extension,” ASTM STP, 1024, (ASTM, Philadelphia, PA, 1993) pp. 27.Google Scholar
32. Tabor, D., The hardness of metals, (Clarendon Press, Oxford, UK, 1951).Google Scholar
33. Francis, H. A., Trans. ASME (July 1976) pp. 272.Google Scholar
34. Johnson, K. L., Contact Mechanics, (Cambridge University Press, New York, 1985).Google Scholar
35. Haggag, F. M. and Murty, K. L., “A novel stress-strain microprobe for nondistructive evolution of mechanical properties of materials”, Proc. of Nondestructive Eval. (NDE) and Mater. Prop. III, (TMS, Warrendale, PA, 1997) pp. 101106.Google Scholar
36. Mallow, T. R., Koch, C. C., Miraglia, P. Q., and Murty, K. L., Mater. Sci. Engr. A, 252, 36 (1998).Google Scholar
37. Lucas, G. E., Odette, G. R., and Sheckard, J. W., ASTM STP, 888, 1986, pp. 112139.Google Scholar
38. Hankin, G. L., Toloczko, M. B., Hamilton, M. L., Garner, F. A. and Faulkner, R. G., J. Nucl. Mater., 258–263, 1657 (1998).Google Scholar
39. Nomote, Rie, Carrick, T. E., and McCabe, J. F., Dental Mater., 17, 415 (2001).Google Scholar
40. Kurtz, S. M., Jewett, C. W., Bergstrom, J. S., Foulds, J. R., and Edidin, A. A., Biomaterials, 23, 1907 (2002).Google Scholar
41. Leoń, C. A. and Drew, R. A. L., Mater. Lett., 56, 812 (2002).Google Scholar
42. Hankin, G. L., Toloczko, M. B., Hamilton, M. L., and Faulkner, R. G., J. Nucl. Mater. 258–263, 1651 (1998).Google Scholar
43. Toloczko, M. B., Kurtz, R. J., Hasegawa, A., and Abe, K., J. Nucl. Mater. 307–311, 1619 (2002).Google Scholar
44. Hamilton, M. L. and Toloczko, M. B., J. Nucl. Mater., 283–287, 488 (2000).Google Scholar
45. Hamilton, M. L., Garner, F. A., Toloczko, M. B., Maloy, S. A., Sommer, W. F., James, M. R., Ferguson, P.D., and Louthan, M. R. Jr, J. Nucl. Mater., 283–287, 418 (2000).Google Scholar
46. Wei, Q., Jia, D., Ramesh, K. T., and Ma, E., Appl. Phys. Lett. 81, 1240 (2002).Google Scholar
47. Koch, C. C., J. Metastable and Nanocrystalline Mater. 18, 9 (2003).Google Scholar
48. Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. Mater., 24, 145 (1990).Google Scholar
49. McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P., and Mukherjee, A. K., Nature, 398, 684 (1999).Google Scholar
50. Zhang, X., Wang, H., Scattergood, R.O., Narayan, J., Koch, C.C., Sergueeva, A.V., and Mukherjee, A.K., Acta Mater. 50, 4823 (2003).Google Scholar