Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T08:18:59.471Z Has data issue: false hasContentIssue false

Falls and Wrist Fracture: Relationship to Women’s Functional Status after Age 50

Published online by Cambridge University Press:  01 July 2016

Catherine M. Arnold*
Affiliation:
School of Physical Therapy, College of Medicine, University of Saskatchewan
Vanina P.M. Dal Bello-Haas
Affiliation:
School of Rehabilitation Science, McMaster University
Jonathan P. Farthing
Affiliation:
College of Kinesiology, University of Saskatchewan
Katie L. Crockett
Affiliation:
School of Physical Therapy, College of Medicine, University of Saskatchewan
Charlene R.A. Haver
Affiliation:
College of Kinesiology, University of Saskatchewan
Geoffrey Johnston
Affiliation:
Department of Surgery, College of Medicine, University of Saskatchewan
Jenny Basran
Affiliation:
Department of Medicine, College of Medicine, University of Saskatchewan
*
La correspondance et les demandes de tire-à-part doivent être adressées à : / Correspondence and requests for offprints should be sent to: Dr. Cathy Arnold, Ph.D. School of Physical Therapy, College of Medicine University of Saskatchewan 210-1121 College Drive Saskatoon, SK S7N 0W3 (cathy.arnold@usask.ca)

Abstract

Women experience a rapid rise in the incidence of wrist fracture after age 50. Accordingly, this study aimed to (1) determine the internal and environmental fall-related circumstances resulting in a wrist fracture, and (2) examine the relationship of functional status to these circumstances. Women aged 50 to 94 years reported on the nature of the injury (n = 99) and underwent testing for physical activity status, balance, strength, and mobility (n = 72). The majority of falls causing wrist fracture occurred outdoors, during winter months, as a result of a slip or trip while walking. Half of these falls resulted in other injuries including head, neck, and spine injuries. Faster walking speed, lower grip strength, and higher balance confidence were significantly associated with outdoor versus indoor falls and slips and trips versus other causes. This study provides insights into potential screening and preventive measures for fall-related wrist fractures in women.

Résumé

Après l’âge de cinquante ans, les femmes éprouvent une hausse rapide de l’incidence des fractures du poignet. En conséquence, cette étude vise (1) de déterminer les circonstances internes et environnementaux liés aux chutes entraînant des fractures du poignet, et (2) d’examiner la relation entre l’état fonctionnel et de telles circonstances. Les femmes âgées de 50 à 94 années sont rapportées sur la nature de la blessure (n = 99) et ont subi tests pour l’activité physique, l’équilibre, la force et la mobilité (n = 72). La majorité des chutes causant la fracture d’un poignet a eu lieu à l’extérieur, pendant les mois d’hiver, à la suite d’un glissement ou trébuchement tout en marchant. La moitié de ces chutes a entraîné d’autres blessures, y compris à la tête et au cou, et des traumatismes médullaires. Une vitesse plus rapide de la marche, une force inférieure d’adhérence, et une plus grande confiance en équilibre ont été toutes significativement associées aux chutes à l’extérieure, par comparaison aux chutes, glissades et trébuchements intérieures contre d’autres causes. Cette étude donne un aperçu des mesures de dépistage et de prévention potentielles pour les fractures du poignet liées aux chutes parmi les femmes.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrand, G., Munoz, E., Sornay-Rendu, E., Duboeuf, F., & Delmas, P. D. (2003). Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: The OFELY Study. Bone, 32(1), 7885.Google Scholar
Beil, F. T., Barvencik, F., Gebauer, M., Mumme, M., Beil, B., Pogoda, P., et al. (2011). The distal radius, the most frequent fracture localization in humans: A histomorphometric analysis of the microarchitecture of 60 human distal radii and its changes in aging. Journal of Trauma Injury, Infection, and Critical Care, 70(1), 154158.Google Scholar
Berg, K., Wood-Dauphinee, S., Williams, J. I., & Gayton, D. (1989). Measuring balance in the elderly: Preliminary development of an instrument. Physiotherapy Canada, 41, 304311.Google Scholar
Borson, S., Scanlan, J., Brush, M., Vitaliano, P., & Dokmak, A. (2000). The mini-cog: A cognitive “vital487 signs” measure for dementia screening in multi-lingual elderly. International Journal of Geriatric Psychiatry, 15(11), 10211027.Google Scholar
Brogren, E., Hofer, M., Petranek, M., Dahlin, L. B., & Atroshi, I. (2012). Fractures of the distal radius in women aged 50 to 75 years: Natural course of patient-reported outcome, wrist motion and grip strength between 1 year and 2–4 years after fracture. Journal of Hand Surgery, 36E(7), 568576.Google Scholar
Canadian Institute for Health Information (2007). Canadian Brain and Nerve Health Coalition: The burden of neurological diseases, disorders and injuries in Canada. Retrieved from http://www.cpa.ca/cpasite/userfiles/Documents/Practice_Page/Burden_neuro_diseases_en.pdf Google Scholar
Cho, Y. J., Gong, H. S., Song, C. H., Lee, Y. H., & Baek, G. H. (2014). Evaluation of physical performance as a fall risk factor in women with a distal radial fracture. Journal of Bone Joint Surgery, 96(5), 361365.CrossRefGoogle ScholarPubMed
Chung, C., Wu, C., Jones, M., Tomoko, A., Tien, D., Givens, R., … Schultz, C. (2014). Reduced handgrip strength as a marker of frailty predicts clinical outcomes in patients with heart failure undergoing ventricular assist device placement. Journal of the American Medical Association, 20(5), 310315.Google Scholar
Crockett, K., Arnold, C., Farthing, J., Chilibeck, P., Bath, B., Baxter-Jones, A. D. G., & Kontulainen, S. A. (2015). Bone strength and muscle properties in older women with and without a history of recent distal radius fracture. Osteoporosis International, 26(10), 24612469.Google Scholar
Cuddihy, M. T., Gabriel, S. E., Crowson, C. S., O’Fallon, W. M., & Melton, L. J. (1999). Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporosis International, 9(6), 469475.Google Scholar
Cummings, S. R., & Melton, L. J. (2002). Epidemiology and outcomes of osteoporotic fractures. Lancet, 359(9319), 17611767.Google Scholar
Dalbaere, K., Crombez, G., Vanderstraeten, G., Willems, T., & Cambier, D. (2004). Fear related avoidance of activities, falls and physical frailty. A prospective community based cohort study. Age and Ageing, 33(4), 368373.Google Scholar
DeGoede, K. M., & Ashton-Miller, J. A. (2003). Biomechanical simulations of forward fall arrests: Effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength. Journal of Biomechanics, 36, 413420.Google Scholar
Environment Canada (2016). Current Results Weather and Science Facts Sunniest Cities in Canada. Retrieved from https://www.currentresults.com/Weather-Extremes/Canada/sunniest-cities.php Google Scholar
Giangregorio, L. M., Papaioannou, A., Macintyre, N. J., Ashe, M. C., Heinonen, A., Shipp, K., … Cheung, A. M. (2014). Too fit to fracture: Exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporosis International, 25(3), 821835.Google Scholar
Graafmans, W. C., Ooms, M. E., Bezemer, P. D., Bouter, L. M., & Lips, P. (1996). Different risk profiles for hip fractures and distal forearm fractures: A prospective study. Osteoporosis International, 6(6), 427431.Google Scholar
Harvey, L. A., & Close, J. C. (2012). Traumatic brain injury in older adults: Characteristics, causes and consequences. Injury, 43(11), 18211826.Google Scholar
Hill, K. (2005). Activities-specific and balance confidence (ABC) scale. Australian Journal of Physiotherapy, 51(3), 197.Google Scholar
Hinman, M. (2002). Comparison of two short-term balance training programs for community-dwelling older adults. Journal of Geriatric Physical Therapy, 25(3), 1020.Google Scholar
Hsiao, E. T., & Robinovitch, S. N. (1998). Common protective movements govern unexpected falls from standing height. Journal of Biomechanics, 31(1), 19.Google Scholar
Jones, C. J., Rikli, R. E., & Beam, W. C. (1999). A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Research Quarterly Exercise and Sport, 70(2), 113119.CrossRefGoogle ScholarPubMed
Kelsey, J. L., Prill, M. M., Keegan, T. H., Tanner, H. E., Bernstein, A. L., Quesenberry, C. P. Jr., & Sidney, S. (2005). Reducing the risk for distal forearm fracture: Preserve bone mass, slow down, and don’t fall! Osteoporosis International, 16, 681690.Google Scholar
Kelsey, J. L., Browner, W. S., Seeley, D. G., Nevitt, M. C., & Cummings, S. R. (1992). Risk factors for fractures of the distal forearm and proximal humerus. The Study of Osteoporotic Fractures Research Group. American Journal of Epidemiology, 135(5), 477489.Google Scholar
Lattimer, L., Lanovaz, J., Farthing, J. P., Kim, S., Madill, S., Robinovitch, S., & Arnold, C. (2014). Differences between younger and older women in muscle strength and biomechanics during a controlled descent on outstretched arms. Poster session at the 43rd Annual Scientific and Education Meeting of the Canadian Association on Gerontology, Niagara Falls, ON. http://cag.conference-services.net/programme.asp?conferenceID=3732&language=en-uk Google Scholar
Magnus, C. R., Arnold, C. M., Johnston, G., Dal-Bello Haas, V., Basran, J., Krentz, J. R., & Farthing, J. P. (2013). Cross-education for improving strength and mobility after distal radius fractures: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 94(7), 12471255.Google Scholar
Myers, A. M., Powell, L. E., Maki, B. E., Holliday, P. J., Brawley, L. R., & Sherk, W. (1996). Psychological indicators of balance confidence: Relationship to actual and perceived abilities. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 51(1), M37M43.Google Scholar
Nellans, K., Kowalski, E., & Chung, K. (2012). The epidemiology of distal radius fractures. Hand Clinics, 28(2), 113115.Google Scholar
O’Neill, T. W., Varlow, J., Silman, A. J., Reeve, J., Reid, D. M., Todd, C., & Woolf, A. D. (1994). Age and sex influences on fall characteristics. Annals Rheumatic Diseases, 53(11), 773775.Google Scholar
Orces, C. H., & Martinez, F. J. (2011). Epidemiology of fall related forearm and wrist fractures among adults treated in US hospital emergency departments. Injury Prevention, 17, 3336. doi: 10.1136/ip.2010.026799 Google Scholar
Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society. (2011). Summary of the updated American Geriatrics Society/British Geriatrics Society Clinical Practice Guideline for Prevention of Falls in Older Persons. Journal of the American Geriatrics Society, 59(1), 148157.Google Scholar
Papaioannou, A., Morin, S., Cheung, A. M., Atkinson, S., Brown, J. P., Feldman, S., … Scientific Advisory Council of Osteoporosis Canada. (2010). 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: Summary. Retrieved from http://www.osteoporosis.ca/health-care-professionals/clinical-tools-and-resources/ Google Scholar
Public Health Agency of Canada (2014). Seniors’ Falls in Canada: Second Report. Ottawa, ON: Author.Google Scholar
Qu, X., Zhang, X., Zhai, Z., Li, H., Liu, X., Liu, G., … & Dai, K. (2014). Association between physical activity and risk of fracture. Journal of Bone and Mineral Research, 29(1), 202211.Google Scholar
Quach, L., Galica, A. M., Jones, R. N., Proctor-Gray, E., Manor, B., Hannan, M. T., & Lipsitz, L. A. (2011). The nonlinear relationship between gait speed and falls: The maintenance of balance, independent living, intellect, and zest in the Elderly of Boston Study. Journal of American Geriatrics Society, 59(6), 10691073.CrossRefGoogle ScholarPubMed
Rantanen, T., Volpato, S., Ferrucci, L., Heikkinen, E., Fried, L. P., & Guralnik, J. M. (2003). Handgrip strength and cause-specific and total mortality in older disabled women: Exploring the mechanism. Journal of American Geriatric Society, 51(5), 636641.Google Scholar
Robinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung, P. M., Sarraf, T., … Loughin, M. (2013). Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet, 381(9860), 4754.Google Scholar
Rose, D. (2010). Fallproof! A comprehensive balance and mobility training program. Champaign, IL: Human Kinetics.Google Scholar
Rucker, D., Rowe, B. H., Johnson, J. A., Steiner, I. P., Russell, A. S., Hanley, D. A., … Majumdar, S. R. (2006). Educational intervention to reduce falls and fear of falling in patients after fragility fracture: Results of a controlled pilot study. Preventive Medicine Journal, 42(4), 316319.Google Scholar
Sattin, R. W., Lambert Huber, D. A., DeVito, C. A., Rodriguez, J. G., Ros, A., Bacchelli, S., …Waxweiler, R. J. (1990). The incidence of fall injury events among the elderly in a defined population. American Journal of Epidemiology, 131(6), 10281037.Google Scholar
Schonnop, R., Yang, Y., Feldman, F., Robinson, E., Loughin, M., & Robinovitch, S. N. (2013). Prevalence of and factors associated with head impact during falls in older adults in long-term care. Canadian Medical Association Journal, 185(17), E803E810.Google Scholar
Shaver, K. G., & Drown, D. (1986). On causality, responsibility, and self-blame: A theoretical note. Journal of Personality and Social Psychology, 50(4), 697702.Google Scholar
Silman, A. J. (2003). Risk factors for colles’ fracture in men and women: Results from the European Prospective Osteoporosis Study. Osteoporosis International, 14, 213218.Google Scholar
Sran, M. M., Stotz, P. J., Normandin, S. C., & Robinovitch, S. N. (2010). Age differences in energy absorption in the upper extremity during a descent movement: Implications for arresting a fall. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 65(3), 312317.Google Scholar
Stevens, J. A., Corso, P. S., Finkelstein, E. A., & Miller, T. R. (2006). The costs of fatal and non-fatal falls among older adults. Injury Prevention, 12(5), 290295.Google Scholar
van den Bogert, A. J., Pavol, M. J., & Grabiner, M. D. (2002). Response time is more important than walking speed for the ability of older adults to avoid a fall after a trip. Journal of Biomechanics, 35(2), 199205.Google Scholar
VanSwearingen, H. M., & Brach, J. S. (2001). Making geriatric assessment work: Selecting useful measures. Physical Therapy, 81(6), 12331252.Google Scholar
Washburn, R. A., McAuley, E., Katula, J., Mihalko, S. L., & Boileau, R. A. (1999). The physical activity scale for the elderly (PASE): Evidence for validity. Journal of Clinical Epidemiology, 52(7), 643651.Google Scholar
World Health Organization (2003). Prevention and management of osteoporosis: Report of a WHO scientific group. WHO Technical Reports Series 921. Geneva, Switzerland: Author.Google Scholar