Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T03:57:10.645Z Has data issue: false hasContentIssue false

Ferroelectric properties and structural refinement of whitlockite-type phosphate Ca8.5Pb0.5Ho(PO4)7

Published online by Cambridge University Press:  29 March 2017

Dina V. Deyneko*
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia Shubnikov Institute of Crystallography RAS, Leninskiy prospekt, 59, Moscow, Russia
Darya A. Petrova
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia Physical and Colloid Chemistry Department, Gubkin Russian State University of Oil and Gas, Leninskiy prospekt, 65, Moscow, Russia
Olga N. Leonidova
Affiliation:
Federal State Government-financed Research Institution, Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, Pervomaiskaya St., 91, Ekaterinburg, Russia
Ivan V. Nikiforov
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia
Bogdan I. Lazoryak
Affiliation:
Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia
*
a)Author to whom correspondence should be addressed. Electronic mail: deynekomsu@gmail.com

Abstract

The system of phosphates Ca9−xPbxHo(PO4)7 were obtained by solid-state reaction and were found to be isotypic with whitlockite-type β-Ca3(PO4)2 (polar space group R3c). The crystal structure encloses five crystallographic sites M1–M5 different in size and oxygen coordination. The unit-cell parameters were determinate using Le Bail decomposition. Rietveld method structural refining showed that Ho3+ ions are located statistically with calcium in M1 and M2 sites, while Pb2+-ions are located in the M3 site. Examination of optical second-harmonic generation evidences non-linear optical activity and confirms polar space group R3c. Structural mechanisms and dielectric features of phase transitions are strongly influenced by the exact distributions of atoms over the crystallographic sites.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belik, A. A., Izumi, F., Ikeda, T., Morozov, V. А., Dilanian, R. A., Torii, S., Kopnin, E. M., Lebedev, O. I., Van Tendeloo, G., and Lazoryak, B. I. (2002). “Positional and orientational disorder in a solid solution of Sr9+x Ni1.5−x (PO4)7 (x=0.3),” Chem. Mater. 14, 44644472.CrossRefGoogle Scholar
Belik, A. A., Morozov, V. A., Deyneko, D. V., Savon, A. E., Baryshnikova, O. V., Zhukovskaya, E. S., Dorbakov, N. G., Katsuya, Y., Tanaka, M., Stefanovich, S. Yu., Hadermann, J., and Lazoryak, B. I. (2017). “Antiferroelectric properties and site occupations of R3+ cations in Ca8MgR(PO4)7 luminescent host materials,” J. Alloys Compd. 699, 928937.Google Scholar
Bessiere, A., Benhamou, R. A., Wallez, G., Lecointre, A., and Viana, B. (2012). “Site occupancy and mechanisms of thermally stimulated luminescence,” Acta Mater. 60, 66416649.CrossRefGoogle Scholar
Calvo, C. and Gopal, R. (1975). “The crystal structure of whitlockite from the Palermo Quarry,” Amer. Mineral. 60, 120133.Google Scholar
Chen, X., Zhuang, N. F., Hu, X. L., Zhuang, F. J., and Chen, J. Z. (2007). “Growth and spectral properties of self-frequency doubling crystal, Nd:Ca9.03Na1.08La0.62(VO4)7 ,” Appl. Phys. B. 88, 449455.Google Scholar
Deineko, D. V., Stefanovich, S. Yu., Mosunov, A. V., Baryshnikova, O. V., and Lazoryak, B. I. (2013). “Structure and properties of Ca9−xPbxR(PO4)7 (R = Sc, Fe, Ga, In) whitlockite-like solid solutions,” Russ. Inorg. Mater. 49, 507512.Google Scholar
Deyneko, D. V., Stefanovich, S. Yu., Mosunov, A. V., Baryshnikova, O. V., and Lazoryak, B. I. (2013). “Ca10.5−x Pb x (PO4)7 and Ca9.5−x Pb x M(PO4)7 ferroelectrics with the whitlockite structure,” Russ. Inorg. Mater. 49, 807812.Google Scholar
Deyneko, D. V., Morozov, V. A., Hadermann, J., Savon, A. E., Spassky, D. A., Stefanovich, S. Yu., Belik, A. A., and Lazoryak, B. I. (2015). “A novel red Ca8.5Pb0.5Eu(PO4)7 phosphor for light emitting diodes application,” J. Alloys Compd. 647, 965972.Google Scholar
Deyneko, D. V., Morozov, V. A., Stefanovich, S. Yu., Belik, A. A., Lazoryak, B. I., and Lebedev, O. I. (2016). “Structural changes in Sr9In(PO4)7 during antiferroelectric phase transition,” Russ. Inorg. Mat. 52, 176185.CrossRefGoogle Scholar
Dickens, B., Schroeder, L. W., and Brown, W. E. (1974). “Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. I. The crystal structure of pure β-Ca3(PO4)2 ,” J. Solid State Chem. 10, 232248.CrossRefGoogle Scholar
Du, F., Nakai, Y., Tsuboi, T., Huang, Y., and Seo, H. J. (2011). “Luminescence properties and Site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu),” J. Mater. Chem. 21, 46694678.Google Scholar
Dusek, M., Petrícek, V., Wunschel, M., Dinnebier, R. E., and Van Smaalen, S. (2001). “Refinement of modulated structures against X-ray powder diffraction data with JANA2000,” J. Appl. Crystallogr. 34(3), 398404.Google Scholar
Henning, P. A., Adolfsson, E., and Grins, J. (2000). “The chalcogenide phosphate apatites Ca10(PO4)6S, Sr10(PO4)6S, Ba10(PO4)6S and Ca10(PO4)6Se,” Z. Kristallogr. 215, 226230.Google Scholar
Huang, C. H. and Chen, T. M. (2011). “Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index,” Inorg. Chem. 50, 57255730.CrossRefGoogle Scholar
Huang, Y., Jiang, C., Cao, Y., Shi, L., and Seo, H. J. (2009). “Luminescence and microstructures of Eu3+-doped in triple phosphate,” Mater. Res. Bull. 44, 793798.Google Scholar
Ji, H., Huang, Z., Xia, Z., Molokeev, M. S., and Atuchin, V. V. (2014). “New yellow-emitting whitlockite-type structure Sr1.75Ca1.25(PO4)2:Eu2+ phosphor for near-UV pumped white light-emitting devices,” Inorg. Chem. 53, 51295135.Google Scholar
Kurtz, S. K. and Perry, T. T. (1968). “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 37983813.Google Scholar
Le Bail, A., Duroy, H. and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. 23, 447452.Google Scholar
Lecointre, A., Bessière, A., Viana, B., Benhamou, R., and Gourier, D. (2010). “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45, 273276.Google Scholar
Lin, Z., Yuan, F., Sun, S., Zhao, W., Zhang, L., Huang, Y., and Wang, G. (2013). “Growth, thermal and spectral properties of Nd3+:YCa9(VO4)7 crystal,” J. Cryst. Growth. 372, 7881.CrossRefGoogle Scholar
Loiko, P. A., Yasukevich, A. S., Gulevich, A. E., Demesh, M. P., Kosmyna, M. B., Nazarenko, B. P., Puzikov, V. M., Shekhovtsov, A. N., Kornienko, A. A., Dunina, E. B., Kuleshov, N. V., and Yumashev, K. V. (2013). “Growth, spectroscopic and thermal properties of Nd-doped disordered Ca9(La/Y)(VO4)7 and Ca10(Li/K)(VO4)7 crystals,” J. Lumin. 137, 252258.Google Scholar
Petricek, V., Dusek, M., and Palatinus, L. (2014). “Crystallographic computing system JANA2006: general features,” Z. Kristallogr. 229(5), 345352.Google Scholar
Sun, S., Lin, Z., Zhang, L., Huang, Y., and Wang, G. (2013). “Growth and spectral properties of a new nonlinear laser crystal of Nd3+:Ca9Y0.5La0.5(VO4)7 ,” J. Alloys. Compd. 551, 229232.Google Scholar
Teterskii, A. V., Morozov, V. A., Stefanovich, S. Y., and Lazoryak, B. I. (2005). “Dielectric and nonlinear optical properties of the Ca9R(PO4)7 (R = Ln) phosphates,” Russ. Inorg. Mater. 50(7), 986989.Google Scholar
Yashima, M., Sakai, A., Kamiyama, T., and Hoshikawa, A. (2003). “Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid. State Chem. 175, 272277.Google Scholar
Supplementary material: File

Deyneko supplementary material

Deyneko supplementary material 1

Download Deyneko supplementary material(File)
File 364.3 KB