Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T13:53:38.255Z Has data issue: false hasContentIssue false

Crystalline Orientation of PbTiO3 Nanorods Grown by MOCVD Using ZnO Nanorods as a Template

Published online by Cambridge University Press:  09 March 2011

Hironori Fujisawa
Affiliation:
Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
Masaru Shimizu
Affiliation:
Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
Ryohei Kuri
Affiliation:
Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
Seiji Nakashima
Affiliation:
Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2201, Japan
Yasutoshi Kotaka
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197, Japan
Koichiro Honda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197, Japan
Get access

Abstract

PbTiO3-covered ZnO nanorods were grown on Al2O3 by metalorganic chemical vapor deposition (MOCVD), and their crystalline orientation was investigated by x-ray diffraction (XRD). Structural analysis by scanning electron microscopy and XRD revealed that the hexagonal ZnO nanorods had -side facets. XRD analysis of PbTiO3 thin films on ZnO/Al2O3revealed that PbTiO3 was epitaxially grown on ZnO, showing 6 variants of crystallites with the c-axis tilted either 27o or 69o from the surface normal to the ZnO plane. Effective piezoelectric coefficients calculated for the 27o and 69o-crystallites using piezoresponse force microscopy confirm that deformation of nanorods and nanotubes contributed to the large electrically-induced strain along the radial direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, X., Song, J., Liu, J., and Wang, Z. L., Science 316, 102 (2007).Google Scholar
2. Xu, S., Hansen, B. J. and Wang, Z. L., Nature Comm. 1, 93 (2010).Google Scholar
3. Alexe, M., Hesse, D., Schmidt, V., Senz, S., Fan, H. J., Zacharias, M., and Gösele, U., Appl. Phys. Lett. 89, 172907 (2006).Google Scholar
4. Kawasaki, S., Catalan, G., Fan, H. J., Saad, M. M., Gregg, J. M., Correa-Duarte, M. A., Rybczynski, J., Morrison, F. D., Tatsuta, T., Tsuji, O., and Scott, J. F., Appl. Phys. Lett. 92, 053109 (2008).Google Scholar
5. Urban, J. J., Yun, W. S., Gu, Q., and Park, H., J. Am. Chem. Soc. 124, 1186 (2002).Google Scholar
6. Yun, W. S., Urban, J. J., Gu, Q., and Park, H., Nano Lett. 2, 447 (2002).Google Scholar
7. Zhou, Z. H., Gao, X. S., Wanga, J., Fujihara, K., Ramakrishna, S., and Nagarajan, V., Appl. Phys. Lett. 90, 052902 (2007).Google Scholar
8. Zhang, X. Y., Lai, C. W., Zhao, X., Wang, D. Y., and Dai, J. Y., Appl. Phys. Lett. 87, 143102 (2005).Google Scholar
9. Zhao, L., Steinhart, M., Yu, J., and Gösele, U., J. Mater. Res. 21, 685 (2006).Google Scholar
10. Yang, Y., Wang, X., Zhong, C., Sun, C., and Li, L., Appl. Phys. Lett. 92, 122907 (2008).Google Scholar
11. Luo, Y., Szafraniak, I., Zakharov, N. D., Nagarajan, V., Steinhart, M., Wehrspohn, R. B., Wendorff, J. H., Ramesh, R., and Alexe, M., Appl. Phys. Lett. 83, 440 (2003).Google Scholar
12. Fujisawa, H., Kuri, R., Shimizu, M., Kotaka, Y., and Honda, K., Appl. Phys. Express. 2, 055003 (2009).Google Scholar
13. Fujisawa, H., Kuri, R., Nakashima, S., Shimizu, M., Kotaka, Y., and Honda, K., Jpn. J. Appl. Phys. 48, 09KA05-1-4 (2009).Google Scholar
14. Nonnenmann, S. S., Gallo, E. M., Coster, M. T., Soja, G. R., Johnson, C. L., Joseph, R. S. and Spanier, J. E., Appl. Phys. Lett. 95, 232903 (2009).Google Scholar
15. Shimizu, M., Hyodo, S., Fujisawa, H., Niu, H., and Shiosaki, T., Jpn. J. Appl. Phys. 36, 5808 (1997).Google Scholar
16. Fujisawa, H., Kita, K., Shimizu, M., and Niu, H., Jpn. J. Appl. Phys. 40, 5551 (2001).Google Scholar
17. Fujisawa, H., Watari, S., Iwamoto, N., Shimizu, M., Niu, H., and Oshima, N., Integrated Ferroelectr. 68, 85 (2004).Google Scholar
18. Shimizu, M., Fujisawa, H., Sugiyama, M., and Shiosaki, T., Integrated Ferroelectr. 6, 155 (1995).Google Scholar
19. Fujisawa, H., Seioh, Y., Kume, M. and Shimizu, M., Jpn. J. Appl. Phys. 47, 7505 (2008).Google Scholar
20. Du, X. H., Belegundu, U. and Uchino, K., Jpn. J. Appl. Phys. 36, 5580 (1997).Google Scholar
21. Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A. and Cross, L. E., J. Appl. Phys. 62, 3331 (1987).Google Scholar
22. Scott, J. F., Nature Mater., 4, 13 (2005).Google Scholar