Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T08:23:43.975Z Has data issue: false hasContentIssue false

A Note on Reporting of Reservoir 14C Disequilibria and Age Offsets

Published online by Cambridge University Press:  07 January 2016

Guillaume Soulet*
Affiliation:
Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA.
Luke C Skinner
Affiliation:
Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK.
Steven R Beaupré
Affiliation:
School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
Valier Galy
Affiliation:
Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA.
*
*Corresponding author. Email: gsoulet@whoi.edu.

Abstract

Reservoir age offsets are widely used to correct marine and speleothem radiocarbon age measurements for various calibration purposes. They also serve as a powerful tracer for carbon cycle dynamics. However, a clear terminology regarding reservoir age offsets is lacking, sometimes leading to miscalculations. This note seeks to provide consistent conventions for reporting reservoir 14C disequilibria useful to a broad range of environmental sciences. This contribution introduces the F14R and δ14R metrics to express the relative 14C disequilibrium between two contemporaneous reservoirs and the R metric as the associated reservoir age offset.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boaretto, E, Thorling, L, Sveinbjörnsdottir, AE, Yechieli, Y, Heinemeier, J. 1998. Study of the effect of fossil organic carbon on 14C in groundwater from Hvinningdal, Denmark. Radiocarbon 40(2):915920.Google Scholar
Broecker, W, Mix, A, Andree, M, Oeschger, H. 1984. Radiocarbon measurements on coexisting benthic and planktic foraminifera shells: potential for reconstructing ocean ventilation times over the past 20 000 years. Nuclear Instruments and Methods in Physics Research B 5(2):331339.Google Scholar
Burke, A, Robinson, LF. 2012. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335(6068):557561.Google Scholar
Burke, A, Stewart, AL, Adkins, JF, Ferrari, R, Jansen, MF, Thompson, AF. 2015. The glacial mid‐depth radiocarbon bulge and its implications for the overturning circulation. Paleoceanography 30(7):10211039.CrossRefGoogle Scholar
Burr, GS, Beck, JW, Corrège, T, Cabioch, G, Taylor, FW, Donahue, DJ. 2009. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51(1):319335.CrossRefGoogle Scholar
Cook, MS, Keigwin, LD. 2015. Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography 30(3):174195.Google Scholar
Deevey, ES, Gross, MS, Hutchinson, GE, Kraybill, HL. 1954. The natural 14C contents of materials from hard-water lakes. Proceedings of the National Academy of Sciences of the USA 40(5):285.Google Scholar
DeVries, T, Primeau, F. 2010. An improved method for estimating water-mass ventilation age from radiocarbon data. Earth and Planetary Science Letters 295(3):367378.CrossRefGoogle Scholar
Druffel, ER, Robinson, LF, Griffin, S, Halley, RB, Southon, JR, Adkins, JF. 2008. Low reservoir ages for the surface ocean from mid‐Holocene Florida corals. Paleoceanography 23(2):PA2209.Google Scholar
Fohlmeister, J, Kromer, B, Mangini, A. 2011. The influence of soil organic matter age spectrum on the reconstruction of atmospheric 14C levels via stalagmites. Radiocarbon 53(1):99115.Google Scholar
Fontugne, M, Guichard, F, Bentaleb, I, Strechie, C, Lericolais, G. 2009. Variations in 14C reservoir ages of Black Sea waters and sedimentary organic carbon during anoxic periods: influence of photosynthetic versus chemoautotrophic production. Radiocarbon 51(3):969976.Google Scholar
Genty, D, Massault, M. 1997. Bomb 14C recorded in laminated speleothems: calculation of dead carbon proportion. Radiocarbon 33(1):3348.Google Scholar
Jones, GA, Gagnon, AR. 1994. Radiocarbon chronology of Black Sea sediments. Deep-Sea Research Part I 41(3):531557.Google Scholar
Jull, AJ, Burr, GS, Hodgins, GW. 2013. Radiocarbon dating, reservoir effects, and calibration. Quaternary International 299:6471.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):13061316.CrossRefGoogle Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid latitudes of the Northern Hemisphere. Radiocarbon 46(3):12611272.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013a. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Brown, DM, Buck, CE, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, van der Plicht, J. 2013b. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55(4):19231945.CrossRefGoogle Scholar
Skinner, LC, Fallon, S, Waelbroeck, C, Michel, E, Barker, S. 2010. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328(5982):1171151.Google Scholar
Soulet, G. 2015. Methods and codes for reservoir–atmosphere 14C age offset calculations. Quaternary Geochronology 29:97103.Google Scholar
Soulet, G, Ménot, G, Garreta, V, Rostek, F, Zaragosi, S, Lericolais, G, Bard, E. 2011. Black Sea “Lake” reservoir age evolution since the Last Glacial—hydrologic and climatic implications. Earth and Planetary Science Letters 308(1):245258.Google Scholar
Southon, JR, Noronha, AL, Cheng, H, Edwards, RL, Wang, Y. 2012. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:3241.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137189.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Thornalley, DJR, Barker, S, Broecker, WS, Elderfield, H, McCave, IN. 2011. The deglacial evolution of North Atlantic Deep Convection. Science 331(6014):202205.Google Scholar
Toucanne, S, Soulet, G, Freslon, N, Jacinto, RS, Dennielou, B, Zaragosi, S, Eynaud, F, Bourillet, JF, Bayon, G. 2015. Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate. Quaternary Science Reviews 123:113133.Google Scholar
Trumbore, S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399411.Google Scholar
Supplementary material: File

Soulet supplementary material

Soulet supplementary material 1

Download Soulet supplementary material(File)
File 338.4 KB