Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T08:18:16.066Z Has data issue: false hasContentIssue false

Evidence of paleoseismic activity recorded in glaciolacustrine sediments predating the Weichselian glacial maximum in East Lithuania

Published online by Cambridge University Press:  07 June 2021

Jonas Satkūnas*
Affiliation:
Nature Research Centre, Akademijos 2, Vilnius, Lithuania
Saulius Šliaupa
Affiliation:
Nature Research Centre, Akademijos 2, Vilnius, Lithuania
*
*Corresponding author email address:jonas.satkunas@lgt.lt

Abstract

Soft-sediment deformation structures (SSDS) were identified in proglacial lacustrine (glaciolacustrine) sediments dated to 25–24 ka in the Buivydžiai outcrop, situated 30 km north of Vilnius in east Lithuania. These sediments accumulated in front of the last Weichselian glaciation maximum. The SSDS originated due to sandy silt liquefaction that disrupted the decimeter-thick silty sand interlayer. A NW-SE trending Buivydžiai fault was mapped in the proximity (8 km) of the Buivydžiai outcrop. The fault is well traced by a dense drilling in the sediments of the preglacial Daumantai Formation in the basal part of the Quaternary cover and attributed to the earliest Pleistocene. Depth difference of the formation along the fault is ~5–8 m; the northern flank is relatively uplifted with respect to the southern flank. The Buivydžiai earthquake was most likely induced by formation of an elastic forebulge flexure of the Earth's crust in front of the ice sheet. The magnitude was evaluated ~M = 6.0–6.5 and was most likely of shallow hypocenter depth. Furthermore, the Bystritsa (Belarus) earthquake of magnitude M = 3.5–4.0 was registered in December 1908 to the east (12 km) of the Buivydžiai outcrop along the Buivydžiai fault, which points to recurrent seismic activity of this fault.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aizberg, R., Garetsky, R., Aronov, A., Karabanov, A., Safronov, O., 1999. Seismotectonics of Belarus the Baltic region. Technika Poszukiwan Geologisznych. Geosynoptika i Geotermia 38, p. 2837.Google Scholar
Allen, C., 2013. Anthropogenic Earth-change: we are on a slippery slope, breaking new ground and it's our fault—a multi-disciplinary review and new unified Earth-system hypothesis. Journal of Earth Science and Engineering 4, p. 153.Google Scholar
Anikėnienė, A., 2008. Research and Modeling of the Recent Vertical Movements of the Earth's Crust on the Basis of Geodetic Measurements (Samples on Lithuanian Territory). Summary of Doctoral Dissertation, Technological Sciences, Measurement Engineering (10T). Vilnius Gediminas Technical University, Vilnius, Lithuania, 23 pp.Google Scholar
Ardvidsson, R., 1996. Fennsocandian earthquakes: whole crustal rupturing related to postglacial rebound. Science 274, p. 744746.CrossRefGoogle Scholar
ASCE (American Society of Civil Engineers)., 2000. ASCE 4-98: Seismic Analysis of Safety-Related Nuclear Structures and Commentary. American Society of Civil Engineers, Reston, Virginia, 118 pp. https://doi.org/10.1061/9780784404331.CrossRefGoogle Scholar
Avotinia, I.Y., Boborikin, A.M., Yemelianov, A.P., Sildvee, H., 1988. Catalogue of historical earthquakes of Belarus and Lithuania. Sejsmologitcesky Bjuletenj, Minsk, pp. 126137. [in Russian]Google Scholar
Baltrūnas, V., Zinkutė, R., Šeirienė, V., Katinas, V., Karmaza, B., Kisielienė, D., Taraškevičius, R., Lagunavičienė, L., 2013. Sedimentary environment changes during the early-middle Pleistocene transition as recorded by the Daumantai sections in Lithuania. Geological Quarterly 57, p. 4559.Google Scholar
Bitinas, A., Damušytė, A., Vaikutienė, G., 2016. Post-glacial seismic activity on the south-eastern coast of the Baltic Sea. Abstract Volume & Field Trip Guidebook on Baltic Sea Marine Geology. The 13th Colloquium. September 12–16, 2016. Gdańsk, Poland. Polish Geological Institute, National Research Institute, Warsaw, Poland, p. 24.Google Scholar
Bitinas, A., Katinas, V., Gibbard, P., Saarmann, S., Damušytė, A., Rudnickaitė, E., Baltrūnas, V. Satkūnas, J., 2015. The problem of lower boundary of the Pleistocene in eastern Lithuania. Quaternary International 386, p. 89101.CrossRefGoogle Scholar
Bitinas, A., Lazauskienė, J., 2011. Implications of the palaeoseismic events based on the analysis of the structures of the Quaternary deposits. Baltica 24, p. 127130.Google Scholar
Boborikin, A.M., Avotinia, I.Y., Yemelianov, A.P., Sildvee, H., Suveizdis, P., 1993. Catalogue of historical earthquakes of Belarus and the Baltic Region. Seismological Report of Seismic Stations of Minsk-Pleshchenitsi and Naroch for 1988. Minsk, pp. 126–137.Google Scholar
Bonilla, B.N., Mark, R.K., Lienkaemper, J., 1984. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement. Seismological Society of America Bulletin, v. 74, p. 23792411.Google Scholar
Brandes, C., Steffen, H., Steffen, R., Wu, P., 2015. Intraplate seismicity in northern central Europe is induced by the last glaciation. Geology 46, p. 611614.CrossRefGoogle Scholar
Brangulis, A.J., Kanevs, S., 2002. Latvian Tectonics. Geological Survey of Latvia, Riga.Google Scholar
Castilla, R.A., Audemard, F.A., 2007. Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. Journal of Seismology 11, p. 473487. https://doi.org/10.1007/s10950-007-9065-z.CrossRefGoogle Scholar
Doughty, M., Eyles, N., Eyles, C., Boyce, J.I., 2014. Lake sediments as natural seismographs: Earthquake-related deformations (seismites) in central Canadian lakes. Sedimentary Geology 313, p. 4561. https://doi.org/10.1016/j.sedgeo.2014.09.001.CrossRefGoogle Scholar
Druzhinina, O., Bitinas, A., Molodkov, A., Kolesnik, T., 2017. Palaeoseismic deformations in the Eastern Baltic region (Kaliningrad District of Russia). Estonian Journal of Earth Sciences 66, p. 119129. https://doi.org/10.3176/earth.2017.09.Google Scholar
Dundulis, G., Kačianauskas, R., Markauskas, D., Stupak, E., Stupak, S., Šliaupa, S., 2017. Reanalysis of the floor response spectra of the Ignalina Nuclear Power Plant Reactor Building. Nuclear Engineering and Design 324, p. 260268.CrossRefGoogle Scholar
Gadeikis, S., Dundulis, K., Žaržojus, G., Gadeikytė, S., Urbaitis, D., Gribulis, D., Šliaupa, S., 2012. Correlation of shear-wave velocities and cone resistance of quaternary glacial sandy soils defined by seismic cone penetration test (SCPT). Journal of Vibroengineering 14, p. 715722.Google Scholar
Gadeikis, S., Dundulis, K., Žaržojus, G., Gadeikytė, S., Urbaitis, D., Gribulis, D., Šliaupa, S., Gabrielaitis, L., 2013. Correlation between shear wave velocity and cone resistance of Quaternary glacial clayey soils defined by seismic cone penetration test (SCPT), Lithuania. Journal of Vibroengineering 15, p. 992998.Google Scholar
Green, R.A., Bommer, J.J., 2019. What is the smallest earthquake magnitude that needs to be considered in assessing liquefaction hazard? Earthquake Spectra 35, p. 14411464.CrossRefGoogle Scholar
Green, R., Olsson, S.M., Polito, C.P., 2006. A comparative study of the influence of fines on the liquefaction susceptibility of sands: field versus laboratory. 8th National Conference on Earthquake Engineering (8NCEE), San Francisco, CA, p. 8229–8238.Google Scholar
Gregersen, S., Wiejacz, P., Debski, W., Domanski, B., Assinovskaya, B., Gutterch, B., Mantiniemi, P., et al. , 2007. The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors 164, p. 6374.CrossRefGoogle Scholar
Guobytė, R., Satkūnas, J., 2011. Pleistocene Glaciations in Lithuania. Developments in Quaternary Sciences 15, p. 231246.CrossRefGoogle Scholar
Hasegawa, H.S., Basham, P.W., 1989. Spatial correlation between seismicity and postglacial rebound in Eastern Canada. In: Gregersen, S., Basham, P.W. (Eds.), Earthquakes at North Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 483500.CrossRefGoogle Scholar
Hyodo, M., Kitaba, I., 2015. Timing of the Matuyama-Brunhes geomagnetic reversal: decoupled thermal maximum and sea-level highstand during Marine Isotope Stage 19. Quaternary International 383, p. 136144.CrossRefGoogle Scholar
IAEA (International Atomic Energy Agency)., 2010. Seismic Hazard in Site Evaluation for Nuclear Power Plants. Special Safety Guide No.SSG-9, Vienna, Austria, IAEA.Google Scholar
Jakobsson, M., Björck, S., O'Regan, M., Flodén, T., Greenwood, S.L., Swärd, H., Lif, A., Ampel, L., Koyi, H., Skelton, F., 2014. Major earthquake at the Pleistocene-Holocene transition in Lake Vättern, southern Sweden. Geology 42, p. 379382. https://doi.org/10.1130/G35499.1.CrossRefGoogle Scholar
Johansson, J.M., Davis, J.L., Scherneck, H.G., Milne, G.A., Vermeer, M., Mitrovica, J.X., Bennett, R.A., et al. , 2002. Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. Journal of Geophysical Research: Solid Earth 107, ETG 3-1 - 3-27. https://doi.org/10.1029/2001JB000400.CrossRefGoogle Scholar
Juozapavičius, G., 1976. Combined studies of genesis of the Neogene and Preglacial (Vilnius) sands of Lithuania (Kompleksnoe izuchenije uslovij vozniknobenija neogenovyh i preglyacial'nyh (Vil'niuskih) peskov Litovskoj SSR). In: Narbutas, V. (Ed.), Metodika i Interpretaciya Rezul'tatov Mireralogicheskich Issledovaniy. Mokslas, Vilnius, pp. 141152 [in Russian]Google Scholar
Klemann, V., Wolf, D., 1999. Implications of a ductile crustal layer for the deformation caused by the Fennoscandian ice sheet. Geophysical Journal International 139, p. 216226.CrossRefGoogle Scholar
Kondratienė, O., Sinkunas, P., Gaigalas, A., Satkunas, J., 1993. Stratotypes of Quaternary of Lithuania. In: Kondratienė, O. (Ed.), Catalogue of Quaternary Stratotypes of the Baltic Region. Institute of Geology, Vilnius, p. 730.Google Scholar
Kondratienė, O., Vichnevskaya, E. 1974. New data on interglacial deposits in Buivydžiai. In: Questions of investigations of Quaternary deposits of Lithuania. LitNIGRI 27 p. 100–118. [in Russian]Google Scholar
Korabliova, L., Popov, M., 1997. Digital model of the Lithuanian gravimetric and magnetometric maps of Lithuania at the scale of 1:200,000. Annual Report by the Geological Survey of Lithuania for Year 1996. Vilnius, p. 21–23. (Full version in Geological Survey of Lithuania Report 4534.) [in Lithuanian]Google Scholar
Lagerbäck, R., Sundh, M., 2008. Early Holocene faulting and paleoseismicity in northern Sweden. Research Paper, C 836. Uppsala, Sveriges Geologiska Undersökning, 80 pp.Google Scholar
Lowe, D.R., 1975. Water escape structures in coarse-grained sediments. Sedimentology 22(2), p. 157204. https://doi.org/10.1111/j.1365-3091.1975.tb00290.x.CrossRefGoogle Scholar
Lund, B., Roberts, R., Smith, C., 2017. Review of Paleo-, Historical and Current Seismicity in Sweden and Surrounding Areas with Implications for the Seismic Analysis Underlying SKI Report 92:3. Strål Säkerhets Myndigheten, 62 p.Google Scholar
Maltman, A.J., Hubbard, B., Hambrey, M.J., 2000. Deformation of glacial materials: introduction and overview. Geological Society, London, Special Publications 176, p. 19.CrossRefGoogle Scholar
Maurer, B.W., Green, R.A., Quigley, M.C., Bastin, S., 2015. Development of magnitude-bound relations for paleoliquefaction analyses: New Zealand case study. Engineering Geology 197, p. 253266. http://dx.doi.org/10.1016/j.enggeo.2015.08.023.Google Scholar
Moretti, M., van Loon, A.J., 2014. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites. Journal of Palaeogeography 3, p. 162173.Google Scholar
Mörner, N.-A., 1995. Paleoseismicity—the Swedish case. Quaternary International 25, p. 7579. https://doi.org/10.1016/1040-6182(94)00037-6.CrossRefGoogle Scholar
Mörner, N.-A., 2009. Late Holocene earthquake geology in Sweden. Geological Society, London, Special Publications 316, pp. 179188. https://doi.org/10.1144/SP316.11Google Scholar
Mörner, N.-A. 2013. Patterns in seismology and palaeoseismology, and their application in long-term hazard assessments—the Swedish case in view of nuclear waste management. Pattern Recognition in Physics 1, p. 7589.CrossRefGoogle Scholar
Motuza, G., 2005. Structure and formation of the crystalline crust in Lithuania. Polskie Towarzystwo Mineralogiczne—Prace specjalne [Mineralogical Society of Poland—Special Papers] 26, p. 6979.Google Scholar
Motuza, G., Motuza, V., Salnikova, E., Kotov, A., 2008. Extensive charnockitic-granitic magmatism in the crystalline crust of West Lithuania. Geologija 61, p. 116.CrossRefGoogle Scholar
Muir-Wood, R., 2000. Deglaciation Seismotectonics: a principal influence on intraplate seismogenesis at high latitudes. Quaternary Science Reviews, 14–1519, p. 1399–1411. https://doi.org/10.1016/S0277-3791(00)00069-X.CrossRefGoogle Scholar
Muir-Wood, R., 1989. Extraordinary deglaciation reverse faulting in the northern Fennoscandia. In: Gregersen, S., Bashman, P.W. (Eds.), Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer, Dordrecht, pp. 141173.CrossRefGoogle Scholar
Murray, T., 1994. Glacial deformation. In: Maltman, A. (Ed.), The Geological Deformation of Sediments. Springer, Dordrecht, pp 7393. https://doi.org/10.1007/978-94-011-0731-0_3.CrossRefGoogle Scholar
Nestor, H., Soesoo, A., Linna, A., Hints, O., Nõlvak, J., 2007. The Ordovician in Estonia and Southern Finland. MTÜ GEOGuide Baltoscandia, Tallinn, 32 pp.Google Scholar
Nirei, H., Kazaoka, O., Uzawa, M., Hiyama, T., Satkūnas, J., Mitamura, M., 2016. Observations on seismically induced liquefaction fluidization in reclaimed land at Hinode, Honshu, Japan. Episodes 39, p. 568581.CrossRefGoogle Scholar
Nirei, H., Takayuki, K., Marker, B., Satkūnas, J., Kazaoka, O., Furuno, K., 2015. Differences in geological hazards from liquefaction-fluidization and Jinami (ground waves) in the areas facing Tokyo Bay and San Francisco Bay. The Proceedings of the Fifth International Symposium on Man-Made Strata and Geo-Pollution, September 4–6, 2015, Urayasu City, Japan, pp. 45–54.Google Scholar
Ojala, A.E.K., Mattila, J., Hämäläinen, J., Sutinen, R., 2019. Lake sediment evidence of paleoseismicity: timing and spatial occurrence of late- and postglacial earthquakes in Finland. Tectonophysics 771, 228227. https://doi.org/10.1016/j.tecto.2019.228227.CrossRefGoogle Scholar
Owen, G., Moretti, M., Alfaro, P., 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology 235, p. 133140. https://doi.org/10.1016/j.sedgeo.2010.12.010.CrossRefGoogle Scholar
Pačėsa, A., Šliaupa, S., 2011. Seismic activity and seismic catalogue of the East Baltic region. Geologija 53, p. 134146.CrossRefGoogle Scholar
Papadopoulos, G.A., Lefkopoulos, G., 1993. Magnitude-distance relations for liquefaction in soil from earthquakes. Bulletin of the Seismological Society of America 83, p. 925938.Google Scholar
Paršeliūnas, E.K., Sacher, M., Ihde, J., 2000. Preparation of Lithuanian levelling network data for united European levelling network. Geodezija ir kartografija 36, p. 171186.Google Scholar
Paudel, M.L., 2015. Soft sediments deformation structures: implication for draining of Paleo-Kathmandu Lake. Journal of Nepal Geological Society 49, p. 4148. https://doi.org/10.3126/jngs.v49i1.23140.Google Scholar
Petroškevičius, P., Putrimas, R., Krikštaponis, B., Būga, A., Neseckas, A., Obuchovski, R., Stepanovienė, J., Tumelienė, E., Viskontas, P., Zigmantienė, E., 2005. Analysis of normal height differences determination in Lithuanian national geodetic vertical network. Proceedings of the 6th International Conference “Environmental Engineering.” Selected Papers. II. 26–27 May, 2005, Vilnius, Lithuania. Vilnius: Technika, pp. 975–984.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusienė, A., Woronko, B., 2019. Seismic shocks, periglacial conditions and glaciotectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica 32, p. 6377. https://doi.org/10.5200/baltica.2019.1.6.Google Scholar
Pisarska-Jamroży, M., Belzyt, Sz., Börner, A., Hoffmann, G., Hüneke, H., Kenzler, M., Obst, K., Rothe, H., van Loon, J.J., 2018. Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics 745, p. 338348.CrossRefGoogle Scholar
Poudjom Djomani, Y.H., Fairhead, J.D., Griffin, W.L., 1999. The flexural rigidity of Fennoscandia: reflection of the tectonothermal age of the lithospheric mantle. Earth and Planetary Science Letters 174, p. 139154. https://doi.org/10.1016/S0012-821X(99)00260-5.CrossRefGoogle Scholar
Satkūnas, J., 1998. The oldest Quaternary in Lithuania. Mededelingen Nederlands Instituut voon Toegespaste Geowetenschappen 60, p. 293304.Google Scholar
Satkūnas, J., 2018. Palaeoseismic deformations (seismites) in the Buivydziai outcrop (East Lithuania) and their morphotectonic implication. In: Pisarska-Jamroży, M., Bitinas, A. (Eds.), Soft-sediment Deformation Structures and Palaeoseismic Phenomena in the South-eastern Baltic Region. Excursion guide of International Palaeoseismological Field Workshop, 17–21 September 2018, Vilnius, Lithuania, Lithuanian Geological Survey, Lithuanian Geological Society, Vilnius, 72 pp.Google Scholar
Satkūnas, J., Grigienė, A., Jusienė, A., Damušytė, A., Mažeika, J., 2009. Middle Weichselian palaeolacustrine basin in the Venta River valley and vicinity (northwest Lithuania), exemplified by the Purviai outcrop. Quaternary International 207, p. 1425.CrossRefGoogle Scholar
Seilacher, A., 1969. Fault-graded beds interpreted as seismites. Sedimentology 13, 1519.CrossRefGoogle Scholar
Šeirienė, V., Šinkūnas, P., Stančikaitė, M., Kisielienė, D., Gedminienė, D., 2019. Late middle Pleistocene interglacial sediments from Buivydžiai site, eastern Lithuania: a problem of chronostratigraphic correlation. Quaternary International 534, 1829. https://doi.org/10.1016/j.quaint.2019.03.006.CrossRefGoogle Scholar
Shvarev, S., Nikonov, A., Rodkin, M., Poleshchuk, A., 2018. The active tectonics of the Vuoksi Fault Zone in the Karelian Isthmus: parametres of paleoearthquake estimated from bedrock and soft-sediment deformation features. Bulletin of the Geological Society of Finland 90, 257273. https://doi.org/10.17741/bgsf/90.2.009.CrossRefGoogle Scholar
Singh, B.P., 2003. Evidence of growth fault and forebulge in the late Paleocene (~57.9–54.7 Ma), western Himalayan foreland basin, India. Earth and Planetary Science Letters 216, p. 717724. https://doi.org/10.1016/S0012-821X(03)00540-5.CrossRefGoogle Scholar
Šliaupa, S., 2002a. Kinematic features of the Telšiai fault in the western Lithuania: structural and permeability prognosis. Geologija 38, p. 2430.Google Scholar
Šliaupa, S., 2002b. Influence of the Weichselian glaciation to stress regime and fault activity of the Baltic region. Geologija 39, p. 1224. [in Lithuanian with English summary]Google Scholar
Šliaupa, S., Bitinas, A., Zakarevičius, A., 2005. Predictive Model of the Vertical Movements of the Earth's Surface: implications for the Land Use of the Lithuanian Coastal Area. Social Strategies 40, p. 221235.Google Scholar
Šliaupa, S., Hoth, P., 2011. Geological evolution and resources of the Baltic Sea area from the Precambrian to the Quaternary. In: Harf, J., Björk, S., Hoth, P. (Eds.), The Baltic Sea Basin. Berlin, Springer, pp. 1352.CrossRefGoogle Scholar
Šliaupa, S., Kačianauskas, R., Markauskas, D., Dundulis, G., Ušpuras, E., 2006. Design basis earthquake of the Ignalina Nuclear Power Plant. Geologija 54, 1930.Google Scholar
Šliaupa, S., Poprawa, P., Jacyna, J., 2000. Structural analysis of seismic data in the Baltic basin: evidences for Silurian–Early Devonian intra-plate compression in the foreland of Caledonian orogen. Journal of the Czech Geological Society 45, p. 260261.Google Scholar
Šliaupa, S., Satkūnas, J., Motuza, G., Šliaupienė, R., 2017. Morphotectonic implication of the Paleoproterozoic Mid-Lithuanian Suture Zone. Geological Quarterly 61, p. 590601. https://doi.org/10.7306/gq.1366.CrossRefGoogle Scholar
Stewart, I.S., Sauber, J., Rose, J., 2000. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews 19, p. 13671389.CrossRefGoogle Scholar
Stirpeika, A., 1999. Tectonic Evolution of the Baltic Syneclise and Local Structures in the South Baltic Region with Respect to their Petroleum Potential. Geological Survey of Lithuania, Vilnius, 112 pp.Google Scholar
Suuroja, K., Kirsimae, K., Ainsaar, L., Kohv, M., Mahane, W.C., Suuroja, S., 2003. The Osmussaar Breccia in northwestern Estonia—evidence of a ~475 Ma earthquake or an impact? In: Koeberl, C., Martinez-Ruiz, F.C. (Eds.), Impact Markers in the Stratigraphic Record. Springer, Heidelberg, Berlin, pp. 333347. https://doi.org/10.1007/978-3-642-55463-6_14.CrossRefGoogle Scholar
Tokarski, A., Świerczewska, A., Lasocki, S., Quoc Cuong, N., Strzelecki, P., Olszak, J., Kukulak, J., Alexanderson, H., Krąpiec, M., 2020. Active faulting and seismic hazard in the Outer Western Carpathians (Polish Galicia): evidence from fractured Quaternary gravels. Journal of Structural Geology 141, 104210. https://doi.org/10.1016/j.jsg.2020.104210.Google Scholar
Tokimatsu, K., Yoshimi, Y., 1983. Empirical Correlation of Soil Liquefaction Based on SPT N-Values and Fines Content. Soils and Foundations 23, p. 5674.CrossRefGoogle Scholar
Üner, S., 2014. Seismogenic structures in Quaternary lacustrine deposits of Lake Van (eastern Turkey). Geologos 20, p. 7987. https://doi.org/10.2478/logos-2014-0011.CrossRefGoogle Scholar
van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15, 355.Google Scholar
van Loon, A.J., 2014. The life cycle of seismite research. Geologos, 20, p. 6166. https://doi.org/10.2478/logos-2014-0005.CrossRefGoogle Scholar
van Loon, A.J., Pisarska-Jamroży, M., Nartiss, M., Krievāns, M., Soms, J., 2015. Frequent earthquakes recorded in a section with twelve seismites at Rakuti (SE Latvia). In: Blumetti, A.M. et al. (Eds.), 6th International INQUA Meeting on Palaeoseismology, Active Tectonics and Archaeoseismology (19–24 April 2015, Pescina, Italy), Miscellanea INGV 27, p. 497–499.Google Scholar
van Loon, A.J., Pisarska-Jamrozy, M., Nartiss, M., Krievans, M., Soms, J., 2016. Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography 5, p. 363380.CrossRefGoogle Scholar
Velázquez-Bucio, M.M., Garduño-Monroy, V.H., 2018. Soft-sediment deformation structures induced by seismic activity in the San Pedro el Alto area, Acambay graben, Mexico. Revista Mexicana de Cienies Geologias 35, p. 2840. http://dx.doi.org/10.22201/cgeo.20072902e.2018.1.530.CrossRefGoogle Scholar
Zakarevičius, A., 1994. The Investigation of Present Vertical Earth Crust's Movements in the Territory of Lithuania. Vilnius, Technika, 276 pp. [in Lithuanian]Google Scholar
Zakarevičius, A., Šliaupa, S., Anikėnienė, A., Dėnas, Ž., Šliaupienė, R., 2008. A model of recent vertical movements of the earth's surface in Lithuania: integration of geodetic levelling data and geological parameters. Geologija 4, 254263.CrossRefGoogle Scholar
Zoback, M.D., Grollimund, B., 2001. Impact of deglaciation on present-day intraplate seismicity in eastern North America and western Europe. Comptes Rendus de l'Académie des Sciences—Series IIA—Earth and Planetary Science, 333. 2333. https://doi.org/10.1016/S1251-8050(01)01623-8.Google Scholar