Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T12:31:14.068Z Has data issue: false hasContentIssue false

Star accretion onto supermassive black holes in axisymmetric galactic nuclei

Published online by Cambridge University Press:  07 March 2016

Shiyan Zhong
Affiliation:
National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, 100012, Beijing, China
Peter Berczik
Affiliation:
National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, 100012, Beijing, China Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120, Heidelberg, Germany Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680, Kyiv, Ukraine
Rainer Spurzem
Affiliation:
National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, 100012, Beijing, China Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, 69120, Heidelberg, Germany Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tidal Disruption (TD) of stars by supermassive central black holes from dense rotating star clusters is modeled by high-accuracy direct N-body simulation. We study the time evolution of the stellar tidal disruption rate and the origin of tidally disrupted stars. Compared with that in spherical systems, we found a higher TD rate in axisymmetric systems. The enhancement can be explained by an enlarged loss-cone in phase space which is raised from the fact that total angular momentum J is not conserved. As in the case of spherical systems, the distribution of the last apocenter distance of tidally accreted stars peaks at the classical critical radius. However, the angular distribution of the origin of the accreted stars reveals bimodal features. We show that the bimodal structure can be explained by the presence of two families of regular orbits, namely short axis tube and saucer orbits.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A. & Merritt, D. 2012 ApJ 750, 111Google Scholar
Böker, T., Laine, S., van der Marel, R. P., Sarzi, M., Rix, H.-W., Ho, L. C., & Shields, J. C. 2002, AJ, 123, 1389Google Scholar
Böker, T., Sarzi, M., McLaughlin, D. E., van der Marel, R. P., Rix, H.-W., Ho, L. C., & Shields, J. C. 2004, AJ, 127, 105Google Scholar
Ernst, A., Glaschke, P., Fiestas, J., Just, A. & Spurzem, R. 2007 MNRAS 377, 465Google Scholar
Evans, C. R. & Kochanek, C. S. 1989, ApJL, 346, L13Google Scholar
Feldmeier, A., Neumayer, N., Seth, A., Schödel, R., Lützgendorf, N., de Zeeuw, P. T., Kissler-Patig, M., Nishiyama, S. & Walcher, C. J. 2014 A&A 570, A2Google Scholar
Frank, J. & Rees, M. J. 1976 MNRAS 176, 633Google Scholar
Hernquist, L. & Ostriker, J. P. 1992 ApJ 386, 375Google Scholar
Komossa, S. 2002 Reviews in Modern Astronomy, 15, 27Google Scholar
Komossa, S. & Merritt, D. 2008 ApJL 683, L21Google Scholar
Lightman, A. P. & Shapiro, S. L. 1976 ApJ 211, 244Google Scholar
Liu, F. K., Li, S. & Komossa, S. 2014 ApJ 786, 103Google Scholar
Magorrian, J. & Tremaine, S. 1999 MNRAS 309, 447Google Scholar
Rees, M. J. 1988, Nature, 333, 523Google Scholar
Schödel, R., Feldmeier, A., Kunneriath, D., Stolovy, S., Neumayer, N., Amaro-Seoane, P. & Nishiyama, S. 2014 A&A 566, A47Google Scholar
Zhong, S., Berczik, P. & Spurzem, R. 2014 ApJ 792, 137Google Scholar