Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T17:42:40.024Z Has data issue: false hasContentIssue false

A pulsed power generator for x-pinch experiments

Published online by Cambridge University Press:  28 November 2006

XIAOBING ZOU
Affiliation:
Department of Electrical Engineering, Tsinghua University, Beijing, China
RUI LIU
Affiliation:
Department of Electrical Engineering, Tsinghua University, Beijing, China
NAIGONG ZENG
Affiliation:
Department of Electrical Engineering, Tsinghua University, Beijing, China
MIN HAN
Affiliation:
Department of Electrical Engineering, Tsinghua University, Beijing, China
JIANQIANG YUAN
Affiliation:
Department of Electrical Engineering, Tsinghua University, Beijing, China
XINXIN WANG
Affiliation:
Department of Electrical Engineering, Tsinghua University, Beijing, China
GUIXIN ZHANG
Affiliation:
Department of Electrical Engineering, Tsinghua University, Beijing, China

Abstract

A ∼500 kV/400 kA/100 ns pulsed power generator (PPG-I) for x-pinch experiments was designed and constructed at Tsinghua University. It is composed of a Marx generator, a combined pulse forming line (PFL), a gas-filled V/N field distortion switch, a transfer line, and a copper-sulphate resistive load for testing. The PPG-I implements a novel design in lines that four pieces of waterline with impedance 5Ω in parallel constitute a combined PFL with 1.25Ω, and incorporate each other by a common self-break V/N switch on a matched 1.25Ω transfer line. At the peak charging voltage of the PFL, the V/N switch breaks down in multi-channel discharge mode, and electric energy is fed into the testing load through the 1.25Ω transfer line. This article presents the design and test of the PPG-I generator.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Deeney, C., Douglas, M.R., Spielman, R.B., Spielman, RB., Rash, T.J., Peterson, D.L., L'Eplattenier, P., Chandler, G.A., Seamen, J.F. & Sturve, K.W. (1998). Enhancement of X-ray power from a Z pinch using nested-wire arrays. Phys. Rev. Lett. 81, 48834886.CrossRefGoogle Scholar
Hartemann, F.V., Tremaine, A.M., Anderson, S.G., Barty, C.P.J., Betts, S.M., Booth, R., Brown, W.J., Crane, J.K., Cross, R.R., Gibson, D.J., Fittinghoff, D.N., Kuba, J., Le Sage, G.P., Slaughter, D.R., Wootton, A.J., Hartouni, E.P., Springer, P.T., Rosenzweig, J.B. & Kerman, A.K. (2004). Characterization of a bright, tunable, ultrafast Compton scattering X-ray source. Laser Part. Beams 22, 221244.Google Scholar
Kalantar, D.H. (1993). An experimental study of the dynamics of X-pinch and Z-pinch plasmas. Ph.D. Thesis. Ithaca, NY: Cornell University Press.
Kalantar, D.H. & Hammer, D.A. (1995). The x-pinch as a point-source of X-rays for backlighting. Rev. Sci. Instrum. 66, 779781.CrossRefGoogle Scholar
Korobkin, Y.V., Romanov, I.V., Rupasov, A.A., Shikanov, A.S., Gupta, P.D., Khan, R.A., Kumbhare, S.R., Moorti, A. & Naik, P.A. (2005). Hard X-ray emission in laser-induced vacuum discharge. Laser Part. Beams 23, 333336.CrossRefGoogle Scholar
Labate, L., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Koster, P., Laville, S. & Tomassini, P. (2004). Ray-tracing simulations of a bent crystal X-ray optics for imaging using laser-plasma X-ray sources. Laser Part. Beams 22, 253259.Google Scholar
Liu, R., Zeng, N.G. & Wang, X.X. (2004). An insulation design for a 1.2 MV enclosed Marx generator. Proc. 12th Asian Conference on Electrical Discharge, pp. 678680. Beijing, China: Tsinghua University Press.
Mitchell, I.H., Bayley, J.M., Chittenden, J.P., Worley, J.F., Dangor, A.E., Haines, M.G. & Choi, P. (1996). A high impedance mega-ampere generator for fiber z-pinch experiments. Rev. Sci. Instrum. 67, 15331541.CrossRefGoogle Scholar
Pikuz, T., Faenov, A., Skobelev, I., Magunov, A., Labate, L., Gizzi, LA., Galimberti, M., Zigler, A., Baldacchini, G., Flora, F., Bollanti, S., Di Lazzaro, P., Murra, D., Tomassetti, G., Ritucci, A., Reale, A., Reale, L., Francucci, M., Martelluci, S. & Petrocelli, G. (2004). Easy spectrally tunable highly efficient X-ray backlighting schemes based on spherically bent crystals. Laser Part. Beams 22, 289300.Google Scholar
Richard, J.A. (1991). Pulse Power Formulary. Albuquerque, NM: North Star Research Corporation.
Shelkovenko, T.A., Pikuz, S.A., Hammer, D.A., Dimant, Y.S. & Mingaleev, A.R. (1999). Evolution of the structure of the dense plasma near the cross point in exploding wire X pinches. Phys. Plasmas 6, 28402846.CrossRefGoogle Scholar
Spielman, R.B., Deeney, C., Chandler, G.A., Douglas, M.R., Fehl, D.L., Matzen, M.K., McDaniel, D.H., Nash, T.J., Porter, J.L., Sanford, T.W.L., Seamen, J.F., Stygar, W.A., Struve, K.W., Breeze, S.P., McGurn, J.S., Torres, J.A., Zagar, D.M., Gilliland, T.L., Jobe, D.O., McKenney, J.L., Mock, R.C., Vargas, M., Wagoner, T. & Peterson, D.L. (1998). Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5, 21052111.CrossRefGoogle Scholar
Wang, X.X., Hu, Y. & Song, X.H. (2005). Gas discharge in a gas peaking switch. Laser Part. Beams 23, 553558.CrossRefGoogle Scholar
Yatsui, K., Shimiya, K., Masugata, K., Shigeta, M. & Shibata, K. (2005). Characteristics of pulsed power generator by versatile inductive voltage adder. Laser Part. Beams 23, 573581.Google Scholar
Zou, X.B., Wang, X.X., Luo, C.M. & Han, M. (2005). Experimental study of gas-puff z-pinch plasma. Plasma Sour. Sci. & Technol. 14, 268272.CrossRefGoogle Scholar
Zou, X.B., Wang, X.X., Luo, C.M. & Han, M. (2002). Measuring the gas flow from a supersonic nozzle used in a 1.5-MA gas puff Z pinch. IEEE Trans. Plasma Sci. 30, 482487.Google Scholar