Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T16:27:46.263Z Has data issue: false hasContentIssue false

REMARKS ON EISENSTEIN

Published online by Cambridge University Press:  14 August 2013

YURI BILU*
Affiliation:
IMB, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence CEDEX, France
ALEXANDER BORICHEV
Affiliation:
LATP, CMI, Aix-Marseille Université, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtain a fully explicit quantitative version of the Eisenstein theorem on algebraic power series which is more suitable for certain applications than the existing version due to Dwork, Robba, Schmidt and van der Poorten. We also treat ramified series and Laurent series, and we demonstrate some applications; for instance, we estimate the discriminant of the number field generated by the coefficients.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Abouzaid, M., ‘Heights and logarithmic gcd on algebraic curves’, Int. J. Number Theory 4 (2008), 177197.Google Scholar
Baker, A. and Coates, J., ‘Integer points on curves of genus 1’, Proc. Cambridge Philos. Soc. 67 (1970), 592602.CrossRefGoogle Scholar
Bilu, Yu., ‘Quantitative Siegel’s theorem for Galois coverings’, Compositio Math. 106 (2) (1997), 125158.CrossRefGoogle Scholar
Bilu, Yu., Strambi, M. and Surroca, A., ‘Quantitative Chevalley–Weil theorem for curves’, arXiv:0908.1233, December 2011.Google Scholar
Bombieri, E. and Gubler, W., Heights in Diophantine Geometry, New Math. Monographs, 4 (Cambridge University Press, Cambridge, 2006).Google Scholar
Coates, J., ‘Construction of rational functions on a curve’, Proc. Cambridge Philos. Soc. 67 (1970), 105123.CrossRefGoogle Scholar
Corvaja, P. and Zannier, U., ‘On the number of integral points on algebraic curves’, J. reine angew. Math. 565 (2003), 2742.Google Scholar
Dwork, B. and Robba, P., ‘On natural radii of $p$-adic convergence’, Trans. Amer. Math. Soc. 256 (1979), 199213.Google Scholar
Dwork, B. M. and van der Poorten, A. J., ‘The Eisenstein constant’, Duke Math. J. 65 (1) (1992), 2343.CrossRefGoogle Scholar
Eisenstein, G., ‘Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen’, Bericht Königl. Preuss. Akad. Wiss. Berlin (1852), 441443.Google Scholar
Fuchs, C., ‘Polynomial–exponential equations and linear recurrences’, Glas. Mat. Ser. III 38 (58) (2003), 233252.CrossRefGoogle Scholar
Heine, E., Theorie der Kugelfunktionen, 2. Aufl. (Reimer, Berlin, 1878).Google Scholar
Hilliker, D. L. and Straus, E. G., ‘Determination of bounds for the solutions to those binary Diophantine equations that satisfy the hypotheses of Runge’s theorem’, Trans. Amer. Math. Soc. 280 (1983), 637657.Google Scholar
Laurent, M. and Poulakis, D., ‘On the global distance between two algebraic points on a curve’, J. Number Theory 104 (2004), 210254.Google Scholar
Rosser, J. B. and Schoenfeld, L., ‘Approximate formulas for some functions of prime numbers’, Illinois J. Math. 6 (1962), 6494.CrossRefGoogle Scholar
Sankaranarayanan, A. and Saradha, N., ‘Estimates for the solutions of certain Diophantine equations by Runge’s method. (English summary)’, Int. J. Number Theory 4 (2008), 475493.CrossRefGoogle Scholar
Schmidt, W. M., ‘Eisenstein’s theorem on power series expansions of algebraic functions’, Acta Arith. 56 (2) (1990), 161179.CrossRefGoogle Scholar
Schmidt, W. M., ‘Construction and estimation of bases in function fields’, J. Number Theory 39 (1991), 181224.CrossRefGoogle Scholar
Schmidt, W. M., ‘Integer points on curves of genus 1’, Compositio Math. 81 (1992), 3359.Google Scholar
Silverman, J. H., ‘Lower bounds for height functions’, Duke Math. J. 51 (1984), 395403.CrossRefGoogle Scholar