Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T02:49:24.182Z Has data issue: false hasContentIssue false

Visible and Infrared Emission from Er-doped III-N Light Emitting Diodes

Published online by Cambridge University Press:  01 February 2011

John M. Zavada
Affiliation:
U.S. Army Research Office, Durham, NC 27709
Ei Ei Nyein
Affiliation:
Department of Physics, Hampton University, Hampton, VA 23668
Uwe Hömmerich
Affiliation:
Department of Physics, Hampton University, Hampton, VA 23668
J. Li
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506
J. Y. Lin
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506
H. X. Jiang
Affiliation:
Department of Physics, Kansas State University, Manhattan, KS 66506
P. Chow
Affiliation:
SVT Associates, Inc., Eden Prairie, MN 55344
Jian-Wei Dong
Affiliation:
SVT Associates, Inc., Eden Prairie, MN 55344
Get access

Abstract

We report on the visible and infrared emission characteristics of Er-doped III-N lightemitting diodes (LEDs). Quantum well-like device structures were grown through a combination of metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) on cplane sapphire substrates. The dual stage growth process was used to take advantage of the high quality of AlGaN layers produced by MOCVD and in situ doping of Er during MBE growth. The multilayer structures were processed into devices and LEDs with different sizes and geometric shapes were produced. Electroluminescence (EL) was observed under either forward or reverse bias conditions. Visible and infrared spectra displayed narrow emission lines representative of the Er3+ system. The temperature dependence of the spectra, which were measured from 100K to 300K, showed a stability in the visible emission intensity but a sharp decrease in the infrared intensity at room temperature. Based on light output vs current measurements, estimates of the excitation cross-section were obtained for visible EL emission.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

References

1. Rare Earth Doped Materials for Photonics, Proceedings of E-MRS Symposium Spring 2003, (Ruterana, P., Editor), Mater. Sci. Eng. B105, Elsevier (2003).Google Scholar
2. Rare Earth Doped Semiconductors III, Proceedings of E-MRS Symposium Spring 2000, (Zavada, J.M., Gregorkiewicz, T., and Steckl, A.J., Editors), Mater. Sci. Eng. B81, Elsevier (2001).Google Scholar
3. Favennec, P.N., L'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Jpn.J. Appl. Phys. 29, L524 (1990).Google Scholar
4. Steckl, A. J., Zavada, J. M., Materials Research Society Bulletin 24 No. 9, 33 (1999).Google Scholar
5. Coffa, S., Franzo, G., and Priolo, F., Materials Research Society Bulletin 23 No. 4, 25 (1998).Google Scholar
6. Thaik, M., Hömmerich, U., Schwartz, R.N., Wilson, R.G., and Zavada, J.M., Appl. Phys. Lett. 71, 2641 (1997).Google Scholar
7. Choyke, W.J., Devaty, R.P., Clemen, L.I., Yoganathan, M., Pensl, G., and Hassler, Ch., Appl. Phys. 65, 1668 (1994).Google Scholar
8. Steckl, A.J. and Birkhahn, R., Appl. Phys. Lett., 73, 1702 (1998).Google Scholar
9. Steckl, A.J., Heikenfeld, J., Garter, M., Birkhahn, R., and Lee, D. S., Compound Semiconductors 48, 6 (2000).Google Scholar
10. Ng, H. M., State-of-the-Art Program on Compound Semiconductors XXXVI and Wide Bandgap Semiconductors for Photonic and Electronic Devices and Sensors II, ECS Proceedings (2002).Google Scholar
11. Wojdak, M., Braud, A., Doualan, J. L., Moncorgé, R., Wojtowicz, T., Ruterana, P., Marie, P., Colder, A., Eimer, S., Méchin, L., and Ng, H. M., phys. stat. sol. (c) 2 No.3 1035 (2005).Google Scholar
12. Zavada, J. M., Jin, S. X., Nepal, N., Lin, J. Y., and Jiang, H. X., Chow, P. and Hertog, B., Appl. Phys. Lett. 84, 1061 (2004).Google Scholar
13. Nam, K. B., Li, J., Nakarmi, M. L., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 81, 1038 (2002).Google Scholar
14. Jin, S. X., Li, J., Shakya, J., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 78, 3532 (2001).Google Scholar
15. Hömmerich, U., Seo, J. T., MacKenzie, J. D., Abernathy, C. R., Birkhahn, R., Steckl, A. J., and Zavada, J. M., MRS Internet J. Nitride Semicond. Res. 5S1, W11.65 (2000).Google Scholar
16. Franzo, G., Coffa, S., Priolo, F., and Spinella, C., J. Appl. Phys. 81, 2784 (1997).Google Scholar