Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T23:50:34.818Z Has data issue: false hasContentIssue false

Electrical Characterization of N+-implanted n-type ZnO Single Crystals: p-n Homojunction and Deep Level Defects

Published online by Cambridge University Press:  01 February 2011

Qilin Gu
Affiliation:
gump423@gmail.com, The University of Hong Kong, Department of Physics, Room417B, CYM Physics Building,The University of Hong Kong, Hong Kong, N/A, Hong Kong, 852-64356057
Xuemin Dai
Affiliation:
xuemin.dai@gmail.com, The University of Hong Kong, Department of Physics, Hong Kong, N/A, Hong Kong
Chi-Chung Ling
Affiliation:
ccling@hku.hk, The University of Hong Kong, Department of Physics, Hong Kong, N/A, Hong Kong
Shijie Xu
Affiliation:
sjxu@hkucc.hku.hk, The University of Hong Kong, Department of Physics, Hong Kong, N/A, Hong Kong
Liwu Lu
Affiliation:
lwlu46@sohu.com, The University of Hong Kong, Department of Physics, Hong Kong, N/A, Hong Kong
Gerhard Brauer
Affiliation:
G.Brauer@fzd.de, Forschungszentrum Dresden-Rossendorf, Institut f¨¹r Ionenstrahlphysik und Materialforschung, Dresden, 01314, Germany
Wolfgang Anwand
Affiliation:
w.anwand@fzd.de, Forschungszentrum Dresden-Rossendorf, Institut f¨¹r Ionenstrahlphysik und Materialforschung, Dresden, 01314, Germany
Wolfgang Skorupa
Affiliation:
W.Skorupa@fzd.de, Forschungszentrum Dresden-Rossendorf, Institut f¨¹r Ionenstrahlphysik und Materialforschung, Dresden, 01314, Germany
Get access

Abstract

Unintentionally doped n-type ZnO single crystals were implanted by nitrogen ions with different fluences of 1013, 1014 and 1015 cm−2 respectively. ZnO p-n homojunction was successfully fabricated due to the formation of p-type layer after 650°C post-implantation annealing in air for 30 minutes. Further thermal evolution of deep level defects was studied through thermal annealing up to 1200°C. Electrical characterization techniques including current-voltage (I-V), capacitance-voltage (C-V), Deep Level Transient Spectroscopy (DLTS) and double-correlation DLTS (DDLTS) were used for investigating the control sample, all the as-implanted and annealed samples through Au/n-ZnO Schottky diodes as well as ZnO p-n junctions. Detailed electrical properties of fabricated devices and characteristics of implantation induced defects were analyzed based on plentiful DLTS spectra. Moreover, low-temperature photoluminescence experiments of all the as-implanted and annealed samples were performed and the correlation between results from electrical and optical characterizations was discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Park, C. H., Zhang, S. B., and Wei, S. –H., Phys. Rev. B 66, 073202 (2002).10.1103/PhysRevB.66.073202Google Scholar
2. Yan, Y. F., Zhang, S. B., and Pantelides, S. T., Phys. Rev. Lett. 86, 5723 (2001).10.1103/PhysRevLett.86.5723Google Scholar
3. Chen, Z. Q., Sekiguchi, T., Yuan, X. L., Maekawa, M., and Kawasuso, A., J. Phys.: Condens. Matter 16, S293 (2004).Google Scholar
4. Georgobiani, A. N., Gruzintsev, A. N., Volkov, V. T., Vorobiev, M. O., Demin, V. I., and Dravin, V. A., Nucl. Instrum. Methods Phys. Res. A 514, 117 (2003).Google Scholar
5. Brauer, G., Anwand, W., Skorupa, W., Kuriplach, J., Melikhova, O. and Moisson, C., Phys. Rev. B 74, 045208 (2006).Google Scholar
6. Auret, F. D., Nel, J. M., Hayes, M., Wu, L., Wesch, W., and Wendler, E., Superlattices Microstruct. 39, 17 (2006)Google Scholar
7. Auret, F. D., Goodman, S. A., Hayes, M., Legodi, M. J., van, H. A. , Laarhoven, and Look, D. C., Appl. Phys. Lett. 79, 3074 (2001).Google Scholar
8. Wenckstern, H. von, Pickenhain, R., Schmidt, H., Brandt, M., Biehne, G., and Brauer, G., Appl. Phys. Lett. 89, 092122 (2006).10.1063/1.2335798Google Scholar
9. Tuomisto, F., Saarinen, K., Look, D. C., and Farlow, G. C., Phys. Rev. B 72, 085206 (2005).Google Scholar
10. Vlasenko, L. S., and Watkins, G. D., Phys. Rev. B 71, 125210 (2005).10.1103/PhysRevB.71.125210Google Scholar
11. Chen, Z. Q., Kawasuso, A., Xu, Y., Naramoto, H., Yuan, X. L., Sekiguchi, T., Suzukiand, R., and Ohdaira, T., J. Appl. Phys. 97, 13528 (2005).10.1063/1.1821636Google Scholar
12. Janotti, A. and Van de Walle, C. G., Appl. Phys. Lett. 87, 122102 (2005).10.1063/1.2053360Google Scholar
13. Dai, X. M., Gu, Q. L., Xu, S. J., Ling, C. C., Brauer, G., Anwand, W., and Skorupa, W., in preparation for submitting to Phys. Rev. B Google Scholar