Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T18:45:53.080Z Has data issue: false hasContentIssue false

Liquid-Phase Siliconizing and Aluminizing at the Surface of a Ti3Al-Based Alloy and Improvement in Oxidation Resistance

Published online by Cambridge University Press:  03 March 2011

Hua-Ping Xiong*
Affiliation:
Lab. of Welding and Forging, Beijing Institute of Aeronautical Materials,Beijing 100095, People’s Republic of China
Yong-Hui Xie
Affiliation:
Lab. of Welding and Forging, Beijing Institute of Aeronautical Materials,Beijing 100095, People’s Republic of China
Wei Mao
Affiliation:
Lab. of Welding and Forging, Beijing Institute of Aeronautical Materials,Beijing 100095, People’s Republic of China
Yun-Feng Chen
Affiliation:
Lab. of Welding and Forging, Beijing Institute of Aeronautical Materials,Beijing 100095, People’s Republic of China
Xiao-Hong Li
Affiliation:
Lab. of Welding and Forging, Beijing Institute of Aeronautical Materials,Beijing 100095, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: xiong@powder.material.tohoku.ac.jp (present); huaping.xiong@biam.ac.cn
Get access

Abstract

A simple and inexpensive method to modify the surface of a Ti3Al-based alloy, liquid-phase siliconizing and aluminizing by an Al-Si alloy, has been proposed. The surface modification at 1013 K for 10 min using Al-10 wt% Si melt resulted in a modified layer with a thickness of about 21 μm, composed of TiAl3 and TiSi2. The coating improved the isothermal oxidation resistance of the Ti3Al-based alloy at 1073 K. A continuous alumina-rich scale was formed at the outermost surface after oxidation. SiO2 was detectable in the oxide scale. The results of x-ray diffraction and x-ray energy dispersive spectrometer analysis showed that during oxidation, some of the TiSi2 in the coating was oxidized to SiO2. In the meantime, the TiSi2 was reduced to a lower silicide, Ti5Si4. The change of the surface microstructure after oxidation and the diffusion reaction between the coating and the Ti3Al substrate were also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lipsitt, H.A. in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C.C., Liu, C.T., and Stoloff, N.S., (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985) p. 351Google Scholar
2Rowe, R.G. in High Temperature Aluminides and Intermetallics, Whang, S.H., Liu, C.T., Pope, D.P., and Stiegler, J.O. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990), p. 375Google Scholar
3Naka, S., Thomas, M. and Khan, T.: Mater. Sci. Technol. 8, 291 (1992).Google Scholar
4Froes, F.H., Suryanarayana, C. and Eliezer, D.: J. Mater. Sci. 27, 5113 (1992).CrossRefGoogle Scholar
5Hon, W.P., Wu, S.K. and Koo, C.H.: Mater. Sci. Eng. A. 131, 85 (1991).CrossRefGoogle Scholar
6Brady, M.P., Smialek, J.L., Humphrey, D.L. and Smith, J.: Acta Mater. 45, 2371 (1997).CrossRefGoogle Scholar
7Wu, J.S., Zhang, L.T., Wang, F., Jiang, K. and Qiu, G.H.: Intermetallics. 8, 19 (2000).Google Scholar
8Qiu, G.H., Wu, J.S., Zhang, L.T. and Lin, D.L.: Scripta Metall. Mater. 33, 213 (1995).CrossRefGoogle Scholar
9Gauer, L., Alperine, S., Steinmetz, P. and Vassel, A.: Oxid. Met. 42, 49 (1994).Google Scholar
10Koo, C.H., Evans, J.W., Song, K.Y. and Yu, T.H.: Oxid. Met. 42, 529 (1994).Google Scholar
11Roy, T.K., Balasubramaniam, R. and Ghosh, A.: Metall. Mater. Trans. 27A, 3993 (1996).CrossRefGoogle Scholar
12Jiang, H., Hirohasi, M., Lu, Y. and Imanari, H.: Scripta Mater. 46, 639 (2002).Google Scholar
13Mungole, M.N., Balasubramaniam, R. and Ghosh, A.: Intermetallics. 8, 717 (2000).Google Scholar
14Koo, C.H. and Yu, T.H.: Surf. Coat. Technol. 126, 171 (2000).CrossRefGoogle Scholar
15Chu, M.S. and Wu, S.K.: Surf. Coat. Technol. 179, 257 (2004).Google Scholar
16Li, Z.W., Gao, W., Yoshihara, M. and He, Y.D.: Mater. Sci. Eng. A. 347, 243 (2003).CrossRefGoogle Scholar
17Jha, S.K., Khanna, A.S. and Harendranath, C.S.: Oxid. Met. 47, 465 (1997).Google Scholar
18Sunrahmanyam, J.: J. Mater. Sci. 23, 1906 (1988).Google Scholar
19Vaidya, R.U., Sin, Y.W., Subramanian, K.N., Zurek, A.K. and Castro, R. inProcessing and Fabrication of Advanced Materials, edited by Ravi, V.A., Srivatsan, T.S., and Moore, J.J. (The Minerals, Metals and Materials Society, Warrendale, PA, 1994), p. 515Google Scholar
20Cockeram, B. and Rapp, R.A.: Oxid. Met. 45, 427 (1996).CrossRefGoogle Scholar
21Xiong, H.P., Li, X.H., Mao, W., Li, J.P., Ma, W.L. and Cheng, Y.Y.: Acta Metall. Sinica. 39, 66 2003 . in Chinese)Google Scholar
22Xiong, H.P., Mao, W., Ma, W.L., Chen, Y.F., Li, J.P. and Li, X.H.: Acta Metall. Sinica. 39, 744 2003 . in Chinese)Google Scholar
23Xiong, H.P., Xie, Y.H., Mao, W., Ma, W.L., Chen, Y.F., Li, X.H. and Cheng, Y.Y.: Scripta Mater. 49, 1117 (2003).CrossRefGoogle Scholar
24 JCPDS No. 26-0039. International Center for Diffraction: Data Newton Square, PAGoogle Scholar
25 JCPDS No. 10-0225. International Center for Diffraction: Data Newton Square, PAGoogle Scholar
26Chu, M.S. and Wu, S.K.: Acta Mater. 51, 3109 (2003).Google Scholar
27Smialek, J.L., Gedwill, M.A. and Brindley, P.K.: Scripta Metall. Mater. 24, 1291 (1990).CrossRefGoogle Scholar
28Kattner, U.R., Lin, J.C. and Chang, Y.A.: Metall. Trans. 23A, 2081 (1992).Google Scholar
29Murray, J.L.: Metall. Trans. 19A, 243 (1988).Google Scholar
30van Loo, F.J.J. and Rieck, G.D.: Acta Metall. 21, 61 (1973).CrossRefGoogle Scholar
31van Loo, F.J.J. and Rieck, G.D.: Acta Metall. 21, 73 (1973).Google Scholar
32Pretorius, R., Marais, T.K. and Theron, C.C.: Mater. Sci. Eng. R10, 1 (1993).Google Scholar
33Miedema, A.R., de Boer, F.R., Boom, R. and Dorleijn, J.W.F.: Calphad. 1, 353 (1977).CrossRefGoogle Scholar
34Touloukian, Y.S., Kirby, R.K. and Taylor, R.E.: Thermophysical Properties of Matter (IFI/Plenum, New York, 1977), 13, p. 1213Google Scholar
35Pan, J.T. and Blech, I.: J. Appl. Phys. 55, 2874 (1984).CrossRefGoogle Scholar
36Jongste, J.F., Loopstra, O.B., Janssen, G.C.A.M. and Radelaar, S.: J. Appl. Phys. 73, 2816 (1993).CrossRefGoogle Scholar
37 JCPDS No. 21-1276. International Center for Diffraction: Data Newton Square, PAGoogle Scholar
38 JCPDS No. 46-1212. International Center for Diffraction: Data Newton Square, PAGoogle Scholar
39 JCPDS No. 09-0098. International Center for Diffraction: Data Newton Square, PAGoogle Scholar
40Lide, D.R.: Handbook of Chemistry and Physics, 71st ed. (CRC Press, Cleveland, OH, 19901991)Google Scholar
41Rahmel, A. and Spencer, P.J.: Oxid. Met. 35, 53 (1991).Google Scholar
42Shida, Y. and Anada, H.: Mater. Trans. JIM. 34, 236 (1993).Google Scholar
43Shemet, V., Tyagi, A.K., Becker, J.S., Lersch, P., Singheiser, L. and Quadakkers, W.J.: Oxid. Met. 54, 211 (2000).Google Scholar
44 JCPDS No. 44-1394. International Center for Diffraction: Data Newton Square, PAGoogle Scholar
45Shida, Y. and Anada, H.: Mater. Trans. JIM. 35, 623 (1994).Google Scholar
46Kim, B.G., Kim, G.M. and Kim, C.J.: Scripta Metall. Mater. 33, 1117 (1995).Google Scholar
47 JCPDS No. 27-0907. International Center for Diffraction: Data Newton Square, PAGoogle Scholar
48Sandwick, T. and Rajan, K.: J. Electron. Mater. 19, 1193 (1990).Google Scholar
49Bartur, M. and Nicolet, M-A.: J. Electrochem. Soc. 131, 371 (1984).Google Scholar
50Chen, J.R., Houng, M.P., Hsiung, S.K. and Liu, Y.C.: Appl. Phys. Lett. 37, 824 (1980).Google Scholar
51d’Heurle, F., Irene, E.A. and Ting, C.Y.: Appl. Phy. Lett. 42, 361 (1983).CrossRefGoogle Scholar
52Smialek, J.L. and Humphrey, D.L.: Scripta Metall. Mater. 26, 1763 (1992).CrossRefGoogle Scholar