Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T23:38:31.065Z Has data issue: false hasContentIssue false

Statistical Analysis of Local Composition and Luminescence in InGaN Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  15 February 2011

S. Einfeldt
Affiliation:
Institute of Solid State Physics, University of Bremen, PO Box 330440, 28334 Bremen, Germany
T. Böttcher
Affiliation:
Institute of Solid State Physics, University of Bremen, PO Box 330440, 28334 Bremen, Germany
D. Hommel
Affiliation:
Institute of Solid State Physics, University of Bremen, PO Box 330440, 28334 Bremen, Germany
H. Selke
Affiliation:
Institute of Materials Physics and Structural Research, University of Bremen, PO Box 330440, 28334 Bremen, Germany
P. L. Ryder
Affiliation:
Institute of Materials Physics and Structural Research, University of Bremen, PO Box 330440, 28334 Bremen, Germany
F. Bertram
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg, Germany
T. Riemann
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg, Germany
D. Rudloff
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg, Germany
J. Christen
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg, Germany
Get access

Abstract

InGaN layers grown by molecular beam epitaxy are investigated in terms of their compositional homogeneity using transmission electron microscopy and cathodoluminescence spectroscopy performed with high spatial resolution. Strong fluctuations of the indium content were found in bulk-like layers, which could be partially reduced by modulating the indium flux during growth, i. e. by nominally growing a short period GaN/InGaN superlattice. For indium compositions above x ≠ 0.1 this approach fails. Strained InGaN in quantum wells exhibits lateral fluctuations on an atomic scale and on a scale of several hundred nanometers. The results are discussed in view of the origin of inhomogeneous indium incorporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ho, I-hsiu and Stringfellow, G. B., J. Cryst. Growth 178, 1 (1997).Google Scholar
[2] Karpov, S. Yu., Internet J. Nitride Semicond. Res. 3, 16 (1998).Google Scholar
[3] Johnson, M. A. L., Highes, W. C., Rowland, W. H. Jr, Schetzina, J. F., Leonard, M., Kong, H. S., Edmond, J. A. D. and Zavada, J., J. Cryst. Growth 175/6, 72 (1997).Google Scholar
[4] Jahnen, B., Albrecht, M., Dorsch, W., Christiansen, S., Strunk, H., Hanser, D. and Davis, Robert F., MRS Internet J. Nitride Semicond. Res. 3, 39 (1998).Google Scholar
[5] Hiramatsu, K., Kawaguchi, Y., Shimizu, M., Sawaki, N., Zheleva, T., Davis, Robert F., Tsuda, H., Taki, W., Kuwano, N. and Oki, K., MRS Internet J. Nitride Semicond. Res. 2, 6 (1997).Google Scholar
[6] Selke, H., Ryder, P. L., Böttcher, T., Einfeldt, S., Kirchner, V., Hommel, D., Bertram, F., Riemann, T. and Christen, J., submitted to J. Cryst. Growth.Google Scholar
[7] Narakuwa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S. and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
[8] Selke, H., Amirsawadkouhi, M., Ryder, P. L., Böttcher, T., Einfeldt, S., Hommel, D., Bertram, F., Christen, J., to be published in Mat. Sci. Eng. B.Google Scholar
[9] Rosenauer, A., Kaiser, S., Reisinger, T., Zweck, J., Gebhardt, W. and Gerthsen, D., Optik 102, 63 (1996).Google Scholar
[10] Böttcher, T., Einfeldt, S., Kirchner, V., Figge, S., Heinke, H., Hommel, D., Selke, H. and Ryder, P. L., Appl. Phys. Lett. 73, 3232 (1998).Google Scholar