Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T11:28:19.764Z Has data issue: false hasContentIssue false

Stellar magnetic activity and their influence on the habitability of exoplanets

Published online by Cambridge University Press:  24 July 2015

T. Lüftinger
Affiliation:
Dept. of Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna, Austria e-mail: theresa.rank-lueftinger@univie.ac.at, manuel.guedel@univie.ac.at, colin.johnstone@univie.ac.at
M. Güdel
Affiliation:
Dept. of Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna, Austria e-mail: theresa.rank-lueftinger@univie.ac.at, manuel.guedel@univie.ac.at, colin.johnstone@univie.ac.at
C. Johnstone
Affiliation:
Dept. of Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna, Austria e-mail: theresa.rank-lueftinger@univie.ac.at, manuel.guedel@univie.ac.at, colin.johnstone@univie.ac.at
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar magnetism, explorable via polarimetry, is a crucial driver of activity, ionization, photodissociation, chemistry and winds in stellar environments. Thus it has an important impact on the atmospheres and magnetospheres of surrounding planets. Modeling of stellar magnetic fields and their winds is extremely challenging, both from the observational and the theoretical points of view, and only recent ground breaking advances in observational instrumentation - as were discussed during this Symposium - and a deeper theoretical understanding of magnetohydrodynamic processes in stars enable us to model stellar magnetic fields and winds and the resulting influence on surrounding planets in more and more detail. We have initiated a national and international research network (NFN): ‘Pathways to Habitability - From Disks to Active Stars, Planets to Life’, to address questions on the formation and habitability of environments in young, active stellar/planetary systems. In this contribution we discuss the work we are carrying out within this project and focus on how stellar magnetic fields, their winds and the relation to stellar rotation can be assessed observationally with relevant techniques such as Zeeman Doppler Imaging (ZDI), field extrapolation and wind simulations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Arge, C. N. & Pizzo, V. J. 2000, JGR 10510465Google Scholar
Bouvier, J., Forestini, M., & Allain, S. 1997, A&A 326, 1023 Google Scholar
Catala, C., Donati, J.-F., Shkolnik, E., Bohlender, D., & Alecian, E. 2007, MNRAS (Letters) 374, L42 Google Scholar
Cranmer, S. R. 2008, ApJ 689, 316 Google Scholar
Cranmer, S. R. 2009, ApJ 706, 824 Google Scholar
Donati, J.-F. 2001, LNP 573, 207 Google Scholar
Donati, J.-F. et al. 2006, MNRAS 370, 629 CrossRefGoogle Scholar
Donati, J.-F. et al. 2008a, MNRAS 385, 1179 Google Scholar
Donati, J.-F. & Landstreet, J. D. 2009, ARAA 47, 333 Google Scholar
Edwards, S. et al. 1993, AJ 106, 372 Google Scholar
Fares, R. et al. 2009, MNRAS 398, 1383 Google Scholar
Fares, R. et al. 2013, MNRAS 435, 1451 Google Scholar
Gallet, F. & Bouvier, J. 2013, A&A 556 36 Google Scholar
Gregory, S. G. et al. 2012, ApJ 755, 97 CrossRefGoogle Scholar
Güdel, M., Dvorak, R., Erkaev, N. et al. 2014, in: Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T. (eds.), Protostars and Planets VI, Vol. 914 (Tucson: University of Arizona Press), p. 883 Google Scholar
Hartman, J. D., Bakos, G. Á., Kovács, G., & Noyes, R. W. 2010, MNRAS 408, 475 CrossRefGoogle Scholar
Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., & Moraux, E. 2008, MNRAS 383, 1588 Google Scholar
Irwin, J. et al. 2009, MNRAS 392, 1456 Google Scholar
Jardine, M. et al. 2013, MNRAS 431, 528 Google Scholar
Johnstone, C. P., Güdel, M., Lüftinger, T., Toth, G., & Brott, I. 2015a, A&A acceptedGoogle Scholar
Johnstone, C. P., Güdel, M., Brott, I., & Lüftinger, T. 2015b, A&A acceptedGoogle Scholar
Kochukhov, O. & Piskunov, N. 2002, A&A 388, 868 Google Scholar
Kochukhov, O. et al. 2004, A&A 414, 613 Google Scholar
Kochukhov, O. & Piskunov, N. 2009, in: Berdyugina, S. V., Nagendra, K. N., & Ramelli, R. (eds.), Solar Polarization 5, ASP Conf. Series 405 (San Francisco: ASP), p. 539 Google Scholar
Kislyakova, K., Holmström, M., Lammer, H. et al. 2014, Science 346, 981 CrossRefGoogle Scholar
Lang, P. et al. 2014, MNRAS 439, 2122 Google Scholar
Llama, J., Vidotto, A. A., Jardine, M., Wood, K., Fares, R., Gombosi, T. I. 2013, MNRAS 436, 2179 Google Scholar
Lammer, H., et al. 2010, Astrobiology 10, 45 Google Scholar
Lüftinger, et al. 2010a, A&A 509, 43 Google Scholar
Lüftinger, T. et al. 2010b, A&A 509, 71 Google Scholar
Meibom, S. et al. 2011, ApJ 733, 9 Google Scholar
Parker, E. N. 1958, ApJ 128, 664 Google Scholar
Piskunov, N. & Kochukhov, O. 2002, A&A 381, 736 Google Scholar
Rebull, L. M., Wolff, S. C., & Strom, S. E. 2004, AJ 127, 1029 Google Scholar
Reiners, A., Basri, G. 2009, A&A 496, 787 Google Scholar
Rosén, L. & Kochukhov, O. 2012, A&A 548, 8 Google Scholar
Sheeley, N. R. et al. 1997, ApJ 484, 472 Google Scholar
Skumanich, A. 1972, ApJ 171, 565 Google Scholar
Tian, F., Kasting, J. F., Liu, H.-L., & Roble, R. G. 2008, JGR (Planets) 113, 5008 Google Scholar
Vidotto, A. A. et al. 2012 MNRAS 423, 3285 Google Scholar
Vidotto, A. A. et al. 2014 MNRAS 438, 1162 Google Scholar
Wang, Y.-M. & Sheeley, N. R. Jr., 1990a, ApJ 355, 726 Google Scholar
Wade, G. A., Bagnulo, S., Kochukhov, O., Landstreet, J. D., Piskunov, N., & Stift, M. J. 2001, A&A 374, 265 Google Scholar
Weber, E. J. & Davis, L. Jr. 1967, ApJ 148, 217 Google Scholar