Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T13:31:06.235Z Has data issue: false hasContentIssue false

Theoretical Study on N Doping in Carbon Materials for Hydrogen Storage

Published online by Cambridge University Press:  31 January 2011

Megumi Kayanuma
Affiliation:
megumi-kayanuma@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Research Institute for Computational Sciences, Tsukiba, Ibaraki, Japan
Tamio Ikeshoji
Affiliation:
t.ikeshoji@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Research Institute for Computational Sciences, Tsukuba, 305-8568, Japan
Hiroshi Ogawa
Affiliation:
h.ogawa@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Research Institute for Computational Sciences, Tsukuba, Ibaraki, Japan
Get access

Abstract

Interaction between nitrogen-substituted graphene-like compounds and hydrogen was investigated using ab initio molecular orbital method in the aspect of hydrogen storage. We adopted coronene as a model compound for fragmented graphene-like carbon materials and compared the interaction between hydrogen and pure or N-substituted coronenes by changing nitrogen positions. Among the assumed 19 N-substituted models, polarozabilities and HOMO–LUMO gaps were compared to evaluate physisorption and chemisorption energies. As for chemisorption, two N-substituted models were selected and closely examined to reveal the dependence on both nitrogen-substitution and hydrogen-adsorption positions. Potential energy surfaces as a function of H–H bond length and H2–coronen distance showed that the barrier height for hydrogen chemisorption strongly depends on N-substitution positions. The chemisorbed products of N-substituted coronenes are stabilized or destabilized compared with the pure carbon case depending on the sites of N-substitution and H-adsorption. These results suggest that N-substitution at certain positions possibly improve hydrogen storage properties of graphene-like materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dillon, A. C. Heben, M. J. Appl. Phys. A72 133 (2001).Google Scholar
2. Züttel, A., Orimo, S. MRS Bulletin, 705 (2002).Google Scholar
3. Ströbel, R., Garche, J. Moseley, P. T. Jörissen, L., Wolf, G. Journal of Power Sources, 159 781 (2006).Google Scholar
4. Nishihara, H. Hou, P.X. Li, L.X. Ito, M. Uchiyama, M. Kaburagi, T. Ikura, A. Katamura, J. Kawarada, T. Mizuuchi, K. Kyotani, T. J. Phys. Chem. C113 3189 (2009).Google Scholar
5. Nishihara, H. Yang, Q.H. Hou, P.X. Unno, M. Yamauchi, S. Saito, R. Paredes, J. I. Martínez-Alonso, A., Tascón, J. M. D., Sato, Y. Terauchi, M. Kyotani, T. Carbon 47 1220 (2009).Google Scholar
6. Wang, L., Yang, F. H. Yang, R. T. AIChE Journal 55 1823 (2009).Google Scholar
7. Yang, Z. Xia, Y. Sun, X. Mokaya, R. J. Phys. Chem. B110 18424 (2006).Google Scholar
8. Viswanathan, B. Sankaran, M. Diamond & Related Materials 18 429 (2009).Google Scholar
9. Zhao, X. B. Xiao, B. Fletcher, A. J. Thomas, K. M. J. Phys. Chem. B109 8880 (2005).Google Scholar
10. Liu, C. Fan, Y. Y. Liu, M. Cong, H. T. Cheng, H. M. Dresselhaus, S. Science 286 1127 (1999).Google Scholar
11. Elias, D. C. Nair, R. R. Mohiuddin, T. M. G. Morozov, S. V. Blake, P. Halsall, M. P. Ferrari, A. C. Boukhvalov, D. W. Katsnelson, M. I. Geim, A. K. Novoselov, K. S. Science 323 610 (2009) .Google Scholar
12. Schmidt, M. W. Baldridge, K. K. Boatz, J. A. Jensen, J. H. Koseki, S. Matsunaga, N. Gordon, M. S. Nguyen, K. A. Su, S. Windus, T. L. Elbert, S. T. Montgomery, J. Dupuis, M. J. Comput. Chem. 14 1347 (1993).Google Scholar