Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T23:00:13.971Z Has data issue: false hasContentIssue false

High Temperature Annealing of Simox Layers Physical Mechanisms of Oxygen Segregation

Published online by Cambridge University Press:  28 February 2011

C. Jaussaud
Affiliation:
C.E.A./I.R.D.I./D.L.E.T.I. 85 X - 38041 GRENOBLE Cedex (France)
J. Margail
Affiliation:
C.E.A./I.R.D.I./D.L.E.T.I. 85 X - 38041 GRENOBLE Cedex (France)
J. Stoemenos
Affiliation:
University of Thessaloniki, Thessaloniki (Greece)
M. Bruel
Affiliation:
C.E.A./I.R.D.I./D.L.E.T.I. 85 X - 38041 GRENOBLE Cedex (France)
Get access

Abstract

High temperature annealing of Simox wafers (T > 1300°C), has been proved to dramaticaly increase the quality of the SOI structure.

The heat treatment leads to a redistribution of the implanted oxygen, opposite to its concentration profile, towards the buried layer.

This paper describes from a thermodynamical point of view the SiO2 precipitates dissolution. The physical mechanisms of the oxygen migration are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ruffel, J.P., Douglas-Hamilton, D.H. and Kaim, R.E.; Nucl. Inst. and Meth. B21, 229 (1987)CrossRefGoogle Scholar
2 Hemment, P.L.F. in Semiconductor-on-Insulators and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and Pfeiffer, L. (Mater. Res. Soc. Proc. 53, 1985) pp. 207221 Google Scholar
3 Izumi, K., Doken, M. and Ariyoshi, H., Electron, lett. 14 N° 18 594 (1978)Google Scholar
4 Lam, H.W., Pinizzotto, R.F., J. Cryst. Growth, 63 554 (1983)CrossRefGoogle Scholar
5 Hemment, P.L.F. in Comparison of Thin Film Transistors and SOI Technologies, edited by Lam, H.W. and Thomson, M.J. (Mater. Res. Soc. Proc. 33) pp. 4151 Google Scholar
6 Foster, D.J., Electron. Lett. 19 N° 17 684 (1983)Google Scholar
7 Cristoloveanu, S., Lee, J.H., Pumfrey, J., Davis, J.R., Arrowsmith, R.P. and Hemment, P.L.F., J. Appl. Phys. 60 (9) 3199 (1986)CrossRefGoogle Scholar
8 Jaussaud, C., Stoemenos, J., Margail, J., Dupuy, M., Martin, P., Blanchard, B., and Bruel, M., Appl. Phys. Lett. 46, 1064 (1985)CrossRefGoogle Scholar
9 Margail, J., Stoemenos, J., Jaussaud, C., Dupuy, M., Martin, P., Blanchard, B., and Bruel, M., in Energy Beam-Solid Interaction and Transient Thermal Processing, edited by Nguyen, V.T., and Cullis, A.G. (Europ. Mater. Res. Soc. Proc.4, 1985) pp. 519524 Google Scholar
10 Stoemenos, J., Jaussaud, C., Bruel, M. and Margail, J., J. Cryst. Growth 73 546 (1985)Google Scholar
11 Celler, G.K., Hemment, P.L.F., West, K.W. and Gibson, J.M. in semiconductor-on-Insulators and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and Pfeiffer, L. (Mater. Res. Soc. Proc. 53, 1985) pp. 227232 Google Scholar
12 Celler, G.K., Hemment, P.L.F., West, K.W. and Gibson, J.M. 48532 (1986)Google Scholar
13 Cristoloveanu, S.. These proceedingsGoogle Scholar
14 Hemment, P.L.F., Maydell-Ondrusz, E., Stephen, K.G., Kilner, J.A. and Butcher, J., Vacuum 34, 203 (1984)CrossRefGoogle Scholar
15 Bourret, A. in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr., Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater. Res. Soc. Proc. 59, 1985) pp. 223236 Google Scholar
16 Hu, S.M.,Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon pp. 249267 Google Scholar
17 Tan, T.Y., Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon pp. 269279 Google Scholar
18 Bourret, A.. Microscopy of semi-conductor materials conference. Oxford march 1987. To be published in “Institute of Physics Conference series”Google Scholar
19 Bender, H., Phys. Stat. Sol. (a) 86, 245 (1985)Google Scholar
20 Holland, O.W., Sjoreen, T.P., Fathy, D. and Narayan, J., Appl. Phys. Lett. 45, 1081 (1984)CrossRefGoogle Scholar
21 van Ommen, A.H., Koek, B.H. and Viegers, M.P.A. Appl. Phys. Lett. 49, 628 (1986)Google Scholar
22 Stoemenos, J., Margail, J., Dupuy, M. and Jaussaud, C., Physica Scripta 35, 42 (1987)Google Scholar
23 MARGAIL, J., thesis, Grenoble University (1987).Google Scholar
24 Bourret, A., Thibault-Dessaux, J. and Seidman, D.N., J. Appl. Phys. 55, 825 (1984)Google Scholar
25 Stoemenos, J. and Margail, J., Thin Solid Films 135, 115 (1986)Google Scholar
26 Burke, J., The Kinetics of Phase Transformation in Metals, (Pergamon, Oxford, 1965)Google Scholar
27 Mikkelsen, J.C. Jr. in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr., Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater. Res. Soc. Proc. 59, 1985) pp. 1930 Google Scholar
28 Stavola, M., Patel, J.R., Kimerling, L.C. and Freeland, P.E., Appl. Phys. Lett. 42, 73 (1983)CrossRefGoogle Scholar
29 Maillet, S., Stuck, R., Grob, J.J., Golanski, A., Pantel, R., and Perio, A., Nucl. Inst. Meth. B1920 (1987) 294298 CrossRefGoogle Scholar
30 Mogro-Campero, A., Love, R.P., Lewis, N., Hall, E.L. and McConnell, M.D., Appl. Phys. Lett. 60 (6), 2103 (1986)Google Scholar
31 Mao, B.Y., Chang, P.H., Lam, H.W., Shen, B.W. and Keenan, J.A., Appl. Phys. Lett. 48 (12), 794 (1986)Google Scholar
32 Chang, P.H. and Mao, B.Y., Appl. Phys. Lett. 50 (3), 152 (1987)Google Scholar
33 Stoemenos, J., Margail, J., Jaussaud, C., Dupuy, M. and Bruel, M., Appl. Phys. Lett. 48 (21), 1470 (1986)CrossRefGoogle Scholar
34 Brebec, G., Seguin, R., Bevenot, J. and Martin, C., Acta Metal. 28, 327 (1980)Google Scholar