Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T13:46:17.909Z Has data issue: false hasContentIssue false

Optical Behavior of Sputter-Deposited Aluminum Nitride: Relationship to Film Cheiistry

Published online by Cambridge University Press:  22 February 2011

C. J. G. Kubiak
Affiliation:
Materials Department and the Labortory for Surface Studies University of Wisconsin-Milwaukee P.O. Box 784, Milwaukee, Wisconsin 53201
C. R. Aita
Affiliation:
Materials Department and the Labortory for Surface Studies University of Wisconsin-Milwaukee P.O. Box 784, Milwaukee, Wisconsin 53201
F. S. Hickernell
Affiliation:
Motorola, Inc. Scottsdale, Arizona 85252
S. J. Joseph
Affiliation:
Motorola, Inc. Scottsdale, Arizona 85252
Get access

Abstract

Films which are nominally aluminum nitride were grown by reactive sputter deposition using an aluminum target and rf-excited nitrogen discharges operated at power levels from 100 to 800W. Depositions were made on water-cooled (111)-cut Si and amorphous quartz substrates. The optical behavior of these films and its relationship to chemistry is discussed in the present paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hejda, B., phys. stat. sol. 32, 407 (1969).Google Scholar
[2] Cox, G. A., Cummins, D.O., Kawabe, K., and Tredgold, R. H., J. Phys. Chem. Solids 28, 543 (1967).Google Scholar
[3] Pastrnak, J. and R-oskovcova, L., phys. stat. sol. 26, 591 (1968).Google Scholar
[4] Bauer, J., Biste, L., and Bolze, D., phys. stat. sol. a 39, 173 (1977).Google Scholar
[5] Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. I., Ettenberg, M., and Gilbert, S. L., J. Appl. Phys. 44, 292 (1973).Google Scholar
[6] Aita, C. R., J. Appl. Phys. 53, 1807 (1982).Google Scholar
[7] Aita, C. R. and Gawlak, C. J.,.J. Vac. Sci. Technol. A 1, 403 (1983).Google Scholar
[8] Wei, J. S. and Westwood, W. D., Appl. Phys. Lett. 32, 819 (1978).CrossRefGoogle Scholar
[9] Moss, T. S., Optical Properties of Semi-conductors (Butterworth, London, 1961).Google Scholar
[10] Pankove, J. I., Optical Processes in Semiconductors (Prentice- Hall, Englewood Cliffs, New Jersey, 1971).Google Scholar
[11] Slack, G. A. and McNelly, T. F., J. Cryst. Growth 34, 263 (1976).Google Scholar
[12] Briggs, D. and Seah, M. P., eds., Practical Surface Analysis by Auger and Photoelectron Spectroscopy (John Wiley, New York, 1980) pp. 511514.Google Scholar
[13] Wagner, C. D., Passoja, D. E., Hillery, H. F., Kinisky, T. G., Six, H.A., Hansen, W. T., and Taylor, J. A., J. Vac. Sci. Technol. 21, 933 (1982).Google Scholar
[14] J-.Kovacich, A., Kasperkiewicz, J., Lichtman, D., and Aita, C.R., J. Appl. Phys. 55, 2935 (1984).Google Scholar
[15] Taylor, J. A. and Rabalais, J. W., Chem, J., Phys. 75, 1735 (1981).Google Scholar
[16] Kawabe, K., Tredgold, R. H., and Inuishi, Y., Elect. Eng. Jpn. 87, 62 (1967).Google Scholar
[17] Taylor, K. M. and Lenie, C., J. Electrochem. Soc. 107, 308 (1960).Google Scholar
[18] Long, G. and Foster, L. M., J. Am. Ceram. Soc 42, 53 (1959).Google Scholar