Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T09:30:17.323Z Has data issue: false hasContentIssue false

Vanadium Oxide Frameworks Modified with Transition Metals

Published online by Cambridge University Press:  18 March 2011

Peter Y. Zavalij
Affiliation:
Institute for Materials Research and Chemistry Department, State University of New York at Binghamton, Binghamton, NY, 13902-6016, USA
M. Stanley Whittingham
Affiliation:
Institute for Materials Research and Chemistry Department, State University of New York at Binghamton, Binghamton, NY, 13902-6016, USA
Get access

Abstract

It is well known that vanadium oxides readily form open structures that defines the potential use of vanadium compounds as cathode materials for lithium batteries. In order to stabilize open frameworks during electrochemical cycling and improve their performance, vanadium oxide can be modified with other transition metals. This work presents the structural analysis of vanadium oxide frameworks modified with Mn and Zn as well as reporting on several interesting new structures, such as TMA4[Zn4V21O58] and NaMn(VO3)4·2H2O.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zavalij, P. Y. and Whittingham, M. S.. Acta Cryst., B55, 627663 (1999).Google Scholar
2. Chirayil, T., Zavalij, P. Y. and Whittingham, M. S.. Chem. Mater., 10, 26292640 (1998).Google Scholar
3. Chirayil, T. G., Boylan, E. A., Mamak, M., Zavalij, P. Y., and Whittingham, M. S.. Chem. Commun., 3334 (1997).Google Scholar
4. Zhang, F., Zavalij, P. Y., and Whittingham, M. S.. J. Mater. Chem., 9, 31373140 (1999).Google Scholar
5. Zhang, F., Zavalij, P. Y., and Whittingham, M. S.. J. Phys. Chem. Solids., (2000) (in press).Google Scholar
6. Zavalij, P. Y., Zhang, F., and Whittingham, M. S.. Acta Cryst., C53, 17381739 (1997).Google Scholar
7. Zhang, F., Zavalij, P., and Whittingham, M. S.. Electrochem. Commun., 564567 (1999).Google Scholar
8. Legagneur, V., Liao, J.-H., An, Y., Salle, A. Le Gal La, Verbaere, A., Piffard, Y., and Guyomard, D.. Solid State Ionics, 133, 161170 (2000)Google Scholar
9. Andreetti, G. D., Calestani, G., Montenero, A., and Bettinelli, M.. Z. Kristallogr., 168, 5358 (1984).Google Scholar
10. Kozlowski, R. and Stadnicka, K.. J. Solid State Chem., 39, 271276 (1981).Google Scholar
11. Ngala, K., Zavalij, P., and Whittingham, M.S.. Mater. Res. Soc. Proc., (2001) (in press).Google Scholar
12. Zhang, F., Zavalij, P. Y., and Whittingham, M. S.. Mater. Res. Soc. Proc., 496, 367372 (1998).Google Scholar
13. Oka, Y., Tamada, O., Yao, T., and Yamamoto, N.. J. Solid State Chem., 126, 6573 (1996).Google Scholar
14. Lloyd, D. J. and Galy, J.. Cryst. Struct. Commun., 2, 209211 (1973).Google Scholar
15. Mueller-Buschbaum, H. and Kobel, M.. Z. Anorg. Allg. Chem., 596, 2328 (1991).Google Scholar
16. Muller, J., Joubert, J. C., and Marezio, M.. J. Solid State Chem., 27, 367382 (1979).Google Scholar
17. Saux, M. and Galy, J.. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie C, 276, 8184 (1973).Google Scholar
18. Oka, Y., Yao, T., Yamamoto, N., and Ueda, Y.. J. Solid State Chem., 141, 133139 (1998).Google Scholar
19. Wang, X., Liu, L., Bontchev, R., and Jacobson, A. J.. Chem. Commun., 1989, 10091010 (1998).Google Scholar