Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T16:14:50.730Z Has data issue: false hasContentIssue false

High-Bandgap a-SI:H Deposited by Concentric-Electrode rf Glow Discharge

Published online by Cambridge University Press:  21 February 2011

J.P. Conde
Affiliation:
Instituto Superior Técnico, Department of Physics, 1096 Lisboa Codex, Portugal
F. Lau
Affiliation:
Instituto Superior Técnico, Department of Physics, 1096 Lisboa Codex, Portugal
V. Chu
Affiliation:
INESC, Rua Alves Redol 9, 1000 Lisboa, Portugal
K. K. Chan
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
J.M. Blum
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
M. Arienzo
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
Get access

Abstract

Hydrogenated amorphous silicon (a-Si:H) with Tauc's optical bandgap (Eopt) between 1.7 and 2.1 eV was deposited at room-temperature by concentric-electrode plasma-enhanced chemical vapor deposition (CE-PECVD). The variation of Eopt was achieved by varying the flow of silane, without hydrogen dilution. The increase in Eopt results from an increase in the hydrogen concentration in the film from 7 to 15%. The photoconductivity shows a monotonie decrease with increasing Eopt and is 10'-7 Scnr-1 for the 2.1 eV sample. The Urbach energy (Eu) is observed to increase sharply with increasing Eopt, while the subgap defect (Ns) density remains approximately constant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Conde, J. P., Chan, K. K., Blum, J. M., Arienzo, M. and Cuomo, J. J., J. Appl. Phys. (in press).Google Scholar
[2] Fang, C. J., Gruntz, K. J., Ley, L. and Cardona, M., J. Non-Cryst. Solids 35&36, 255 (1980).CrossRefGoogle Scholar
[3] Vanacek, M., Kocka, J., Stuchlík, J., Kosisek, Z., Stika, O. and Triska, A., Sol. Energy Mater. 8, 411 (1983).CrossRefGoogle Scholar
[4] Jackson, W. B. and Amer, N. M., Phys. Rev. B25, 5559 (1982).CrossRefGoogle Scholar
[5] den Boer, W., J. Phys. (Paris) Colloq. 42, C4–451 (1981).CrossRefGoogle Scholar
[6] Solomon, I., Benferhat, R. and Tran-Quoc, H., Phys. Rev. B30, 3422 (1984).Google Scholar
[7] Conde, J. P., Chan, K. K., Blum, J. M. and Arienzo, M., J. Appl. Phys. (in press).Google Scholar
[8] Tawada, Y., Tsuge, K., Kondo, M., Okamoto, H. and Hamakawa, Y., J. Appl. Phys. 53, 5273 (1982).CrossRefGoogle Scholar
[9] Matsuda, A., Yamaoka, T., Wolff, S., Koyama, M., Imanishi, Y., Kataoka, H., Matsuura, H. and Tanaka, K., J. Appl. Phys. 60, 4025 (1986).Google Scholar
[10] Lu, H. Y. and Petrich, M. A., J. Appl. Phys. 71, 1693 (1992).CrossRefGoogle Scholar
[11] Aljishi, S., Smith, Z. E. and Wagner, S., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific, Singapore, 1988), p. 887.Google Scholar
[12] Smith, Z. E., Matsuda, A., Matsuura, H., Oheda, H., Tanaka, M. and Yokohama, S., J. Non- Cryst. Solids 114, 480 (1989).CrossRefGoogle Scholar
[13] Morimoto, A., Miura, T., Kumeda, M. and Shimizu, T., J. Appl. Phys. 53, 7299 (1982).CrossRefGoogle Scholar