Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T04:30:10.168Z Has data issue: false hasContentIssue false

Everything we’d like to do with LSST data, but we don’t know (yet) how

Published online by Cambridge University Press:  30 May 2017

Željko Ivezić
Affiliation:
Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580, USA email: ivezic@astro.washington.edu
Andrew J. Connolly
Affiliation:
Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580, USA email: ivezic@astro.washington.edu
Mario Jurić
Affiliation:
Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580, USA email: ivezic@astro.washington.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Large Synoptic Survey Telescope (LSST), the next-generation optical imaging survey sited at Cerro Pachon in Chile, will provide an unprecedented database of astronomical measurements. The LSST design, with an 8.4m (6.7m effective) primary mirror, a 9.6 sq. deg. field of view, and a 3.2 Gigapixel camera, will allow about 10,000 sq. deg. of sky to be covered twice per night, every three to four nights on average, with typical 5-sigma depth for point sources of r=24.5 (AB). With over 800 observations in ugrizy bands over a 10-year period, these data will enable a deep stack reaching r=27.5 (about 5 magnitudes deeper than SDSS) and faint time-domain astronomy. The measured properties of newly discovered and known astrometric and photometric transients will be publicly reported within 60 sec after observation. The vast database of about 30 trillion observations of 40 billion objects will be mined for the unexpected and used for precision experiments in astrophysics. In addition to a brief introduction to LSST, we discuss a number of astro-statistical challenges that need to be overcome to extract maximum information and science results from LSST dataset.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Berry, M., Ivezić, Ž., Sesar, B., et al. 2012, Astrophysical Journal, 757, 166 Google Scholar
Bolzonella, M., Miralles, J. M., & Pelló, R. 2000, Astronomy & Astrophysics, 363, 476 Google Scholar
Connolly, A. J., Angeli, G. Z., Chandrasekharan, S., et al. 2014, Proceedings of the SPIE, Volume 9150, id. 915014Google Scholar
Delgado, F., Saha, A., Chandrasekharan, S., et al. 2014, Proceedings of the SPIE, Volume 9150, id. 915015Google Scholar
DESC; Dark Energy Science Collaboration (DESC) Science Roadmap, 2015, http://lsst-desc.org/sites/default/files/DESC_SRM_V1.pdf Google Scholar
Eyer, L., Evans, D. W., Mowlavi, N., et al. 2015, ArXiv:1502.03830 Google Scholar
Flaugher, B. 2008, In A Decade of Dark Energy: Spring Symposium, Proceedings of the conferences held May 5–8, 2008 in Baltimore, Maryland. (USA). Ed. by N. Pirzkal & H. Ferguson. Google Scholar
Ivezić, Ž., Tyson, J. A., Acosta, E., et al. 2008a, ArXiv:0805.2366 Google Scholar
Ivezić, Ž., Sesar, B., Jurić, M., et al. 2008b, Astrophysical Journal, 684, 287 Google Scholar
Jain, B., Spergel, D., Bean, R., et al. 2015, ArXiv:1501.07897 Google Scholar
Jones, R. L., Jurić, M., & Ivezić, Ž. 2016, Proceedings of the IAU, 318, 282, ArXiv:1511.03199 Google Scholar
Jurić, M., Ivezić, Ž., Brooks, A., et al. 2008, Astrophysical Journal, 673, 864 Google Scholar
Jurić, M., Kantor, J., Lim, K-T., et al. 2016, ASP Conf Ser. in press, ArXiv:1512.07914 Google Scholar
Kaiser, N., Burgett, W., Chambers, K., et al. 2010, Proc. SPIE 7733, Ground-based and Airborne Telescopes III, vol. 7733, 77330EGoogle Scholar
Lang, D., Hogg, D. W. & Mykytyn, D. 2016, Astrophysics Source Code Library (ascl:1604.008)Google Scholar
LSST Science Collaboration, 2009, LSST Science Book, arXiv:0912.0201Google Scholar
LSST Science Collaboration, 2011, LSST Science Requirements Document, http://ls.st/srd Google Scholar
Meyers, J. E. & Burchat, P. R. 2015, Astrophysical Journal, 807, 182 Google Scholar
Newman, J. A. 2008, Astrophysical Journal, 684, 88 Google Scholar
Reyes, R., Mandelbaum, R., Seljak, U., et al. 2010, Nature, 464, 256 Google Scholar
Richards, J. W., Starr, D. L., Butler, N. R., et al. 2011, Astrophysical Journal, 733, 10 Google Scholar
Ridgway, S. T., Matheson, T., Mighell, K. J., Olsen, K. A., & Howell, S. B. 2014, Astrophysical Journal, 796, 53 Google Scholar
Rockosi, C. M., Odenkirchen, M., Grebel, E. K., et al. 2002, Astronomical Journal, 124, 349 Google Scholar
Virtanen, J., Muinonen, K., & Bowell, E. 2001, Icarus, 154, 412 Google Scholar
Willman, B., Dalcanton, J. J., & Martinez-Delgado, D. 2005, Astrophysical Journal, 626, 85 Google Scholar