Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-27T09:55:24.454Z Has data issue: false hasContentIssue false

La-Based Perovskites as Oxygen-Exchange Redox Materials for Solar Syngas Production

Published online by Cambridge University Press:  24 April 2017

Rahul R. Bhosale*
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Anand Kumar
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Anchu Ashok
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Parag Sutar
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Gorakshnath Takalkar
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Majeda Khraisheh
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Fares AlMomani
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Ujjal Ghosh
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Get access

Abstract

This contribution reports the synthesis and characterization of La-based perovskites which can be used for the production of syngas via solar thermochemical splitting of H2O/CO2. The La-based perovskites were synthesized using a solution combustion synthesis approach. The derived perovskites were analyzed using powder X-ray diffractometer (PXRD), BET surface area analyzer (BET), and scanning/transmission electron microscope (SEM/TEM). The results associated with the synthesis and characterization of La-based perovskites is reported in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhosale, R. R., Mahajani, V. V., Sep. Sci. Technol. 48, 23242337 (2013).Google Scholar
Bhosale, R. R., Mahajani, V. V., J. Renewable Sustainable Energy. 5, 063110 (2013).Google Scholar
Bhosale, R. R., Kumar, A., AlMomani, F., Ghosh, U., AlNouss, A., Scheffe, J., Gupta, R. B., Ind. Eng. Chem. Res. 55, 52385246 (2016).Google Scholar
Loutzenhiser, P., Steinfeld, A., Int. J. Hydrogen Energy. 36, 12141 (2011).Google Scholar
Steinfeld, A., Sol. Energy. 78, 603 (2005).Google Scholar
Abanades, S., Int. J. Hydrogen Energy. 37, 8223 (2012).Google Scholar
Charvin, P., Abanades, S., Lemont, F., Flamant, G., AlChE J. 54, 2759 (2008).Google Scholar
Bhosale, R. R., Kumar, A., Sutar, P., Energy Convers. Manage. 135, 226 (2017).Google Scholar
Abanades, S., Villafan-Vidales, H. I., Chem. Eng. J. 175, 368 (2011).Google Scholar
Steinfeld, A., Sanders, S., Palumbo, R., Sol. Energy. 65, 43 (1999).Google Scholar
Bhosale, R. R., Kumar, A., Broeke, LJP van den, Gharbia, S., Dardor, D., Jilani, M., Folady, J., Al-Fakih, M., Tarsad, M., Int. J. Hydrogen Energy. 40, 1639 (2015).Google Scholar
Gal, A., Abanades, S., Flamant, G., Energy Fuels. 25, 4836 (2011).Google Scholar
Bhosale, R. R., Shende, R., Puszynski, J., Int. J. Hydrogen Energy. 37, 2924 (2012).Google Scholar
Chueh, W., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S., Steinfeld, A., Science. 330, 1797 (2010).Google Scholar
Kodama, T., Gokon, N., Yamamoto, R., Sol. Energy. 82, 73 (2008).Google Scholar
Bhosale, R. R., Khadka, R. P., Puszynski, J. A., Shende, R. V., J. Renewable Sustainable Energy. 3, 063104 (2011).Google Scholar
Scheffe, J., Li, J., Weimer, A., Int. J. Hydrogen Energy. 35, 3333 (2010).Google Scholar
Bhosale, R. R., Kumar, A., AlMomani, F., Alxneit, I., Ceram. Int. 42, 6728 (2016).Google Scholar
Furler, P., Scheffe, J., Steinfeld, A., Energy Environ. Sci. 5, 6098 (2012).Google Scholar
Bhosale, R. R., Kumar, A., AlMomani, F., Alxneit, I., Ceram. Int. 42, 2431 (2016).Google Scholar
Scheffe, J.R., Steinfeld, A., Mater. Today 17, 341348 (2014).Google Scholar
Bhosale, R. R., Kumar, A., AlMomani, F., Ghosh, U., Al-Muhtaseb, S., Gupta, R. B., Alxneit, I., Ceram. Int. 42, 9354 (2016).Google Scholar
Evdou, A., Zaspalis, V., Nalbandian, L., Int. J. Hydrogen Energy. 33, 5554 (2008).Google Scholar
Scheffe, J. R., Weibel, D., Steinfeld, A., Energy Fuels. 27, 4250 (2013).Google Scholar
McDaniel, A., Miller, E., Arifin, D., Ambrosini, A., Coker, E., O’Hayre, R., Chueh, W., Tong, J., Energy Environ. Sci. 6, 2424 (2013).Google Scholar
Demont, A., Abanades, S., RSC Adv. 4, 54885 (2014).Google Scholar
Rao, C.N.R., Dey, S., J. Solid State Chem. 242, 107 (2016).Google Scholar
Galvez, M. E., Jacot, R., Scheffe, J., Cooper, T., Patzke, G., Steinfeld, A., Phys. Chem. Chem. Phys. 17, 6629 (2015).Google Scholar
Dey, S., Rao, C.N.R., ACS Energy Lett. 1, 237 (2016).Google Scholar
Dey, S., Naidu, B. S., Rao, C.N.R., Dalton Trans. 45, 2430 (2016).Google Scholar