Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T22:23:08.059Z Has data issue: false hasContentIssue false

Modeling of Effect of Stress on C Diffusion/Clustering in Si

Published online by Cambridge University Press:  01 February 2011

Hsiu-Wu Guo
Affiliation:
hwg@u.washington.edu, University of Washington, Electrical Engineer Department, University of Washington, Department of Electrical Engineering, Paul Allen Center – Room AE100R, Seattle, WA, 98195-2500, United States
Chihak Ahn
Affiliation:
chahn@u.washington.edu, University of Washington, Physics, Seattle, WA, 98195, United States
Scott T Dunham
Affiliation:
dunham@ee.washington.edu, University of Washington, Electrical Engineering, Seattle, WA, 98195, United States
Get access

Abstract

Extensive ab-initio calculations were performed to find formation energies of stable C complex configurations in silicon as function of stress. The results indicate that substitutional C is the lowest energy state, while the <100> split interstitial is the dominant mobile species. Investigation of small carbon/interstitial clustering suggests that these clusters are only significant under a substantial interstitial supersaturation. We studied the diffusion path for neutral C including the impact of stress. Through KLMC analysis of stress effect on diffusivity, we found that tensile biaxial strain enhances the effective C diffusivity, with a stronger stress dependence for C diffusivity in the out-of-plane direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishikawa, S., Tanaka, A., and Yamaji, T., Appl. Phys. Lett. 60, 2270 (1992).Google Scholar
2. Stolk, P.A., Eaglesham, D.J., Gossmann, H.-J., and Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
3. Napolitani, E., Coati, A., Salvador, D. De, Carnera, A., Mirabella, S., Scalese, S., and Priolo, F., Appl. Phys. Lett. 79, 4145 (2001).Google Scholar
4. Pawlak, B.J., Janssens, T., Brijs, B., Vandervorst, W., Collart, E.J.H., Felch, S.B., and Cowern, N.E.B., Appl. Phys. Lett. 89, 062110 (2006).Google Scholar
5. Watkins, G.D. and Brower, K.L., Phys. Rev. Lett. 36, 1329 (1976).Google Scholar
6. Rollert, F., Stolwijk, N.A., and Mehrer, H., Mater. Sci. Forum 3841, 753 (1989).Google Scholar
7. Song, L.W. and Watkins, G.D., Phys. Rev. B 42, 5759 (1990).Google Scholar
8. Capaz, R.B., Pino, A. Dal, and Joannopoulos, J.D., Phys. Rev. B 50, 7439 (1994).Google Scholar
9. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
10. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990)Google Scholar
11. Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., and Poate, J.M., Mater. Sci. Eng. B 36, 275 (1996).Google Scholar
12. Liu, C.-L., Windl, W., Borucki, L., Lu, S. and Liu, X.-Y., Appl. Phys. Lett. 80, 52 (2002).Google Scholar
13. Leary, P., Jones, R., öberg, S., and Torres, V.J.B., Phys. Rev. B 55, 2188 (1997).Google Scholar
14. Capaz, R.B., Pino, A. Dal, and Joannopoulos, J.D., Phys. Rev. B 58, 9845 (1998).Google Scholar
15. Mattoni, A., Bernardini, F., and Colombo, L., Phys. Rev. B 66, 195214 (2002).Google Scholar
16. Zhu, J., Comput. Mater. Sci. 12, 309 (1998).Google Scholar
17. Jönsson, H., Mills, G., and Jacobsen, K.W., Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, Singapore, 1998), p.385.Google Scholar
18. Henkelman, G. and Jönsson, H, J. Chem. Phys. 113, 9978 (2000).Google Scholar
19. Henkelman, G., Uberuaga, B.P., and Jönsson, H, J. Chem. Phys. 113, 9901 (2000).Google Scholar
20. Tipping, A.C. and Newman, R.C., Semicond. Sci. Technol. 2, 315 (1987).Google Scholar
21. Song, L.W and Wakins, G.D, Phys. Rev. B 42, 5759 (1990).Google Scholar
22. Glicksman, M.E., Diffusion in solids: Field theory, solid-state principles, and applications, (John Wiley, 2000).Google Scholar
23. Guo, H.-W, Dunham, S.T., Shih, C-L., and Ahn, C., Proceedings of IEEE 2006 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD, Monterey, CA, 2006), p.71.Google Scholar