Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T22:16:06.704Z Has data issue: false hasContentIssue false

Influence of indium addition on electromigration behavior of solder joint

Published online by Cambridge University Press:  19 September 2011

Kiju Lee*
Affiliation:
Graduate School of Engineering, Osaka University, Osaka 567-0047, Japan
Keun-Soo Kim
Affiliation:
Fusion Technology Lab., Hoseo University, Asan 336-795, Korea
Katsuaki Suganuma
Affiliation:
Institute of Science and Industrial Research, Osaka University, Osaka 567-0047, Japan
*
a)Address all correspondence to this author. e-mail: kjlee@eco.sanken.osaka-u.ac.jp
Get access

Abstract

The electromigration (EM) behavior of the Cu/Sn–In/Cu solder model strip was investigated under the conditions of high electrical current density (10 kA/cm2) at various temperatures. The composition of indium (In) was 0, 4, 8, and 16 in wt%. The interconnection of Sn–In solder alloys with a Cu substrate was prepared by reflow soldering at 250 °C. Microstructural analysis confirmed that primary intermetallic compound formed at the interface of the Cu/Sn–In strip was Cu6(In,Sn)5 regardless of In contents. Sn grain size became finer as In content increased. After current stressing, electrical failure was caused by the formation of voids and cracks at the cathode because of the migration of Cu atoms. Sn–16In alloy that has fine grain structure exhibits excellent EM resistance primarily due to the retardation of Cu migration.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tu, K.: Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94(9), 5451 (2003).Google Scholar
2.Tu, K., Gusak, A., and Li, M.: Physics and materials challenges for lead-free solders. J. Appl. Phys. 93(3), 1335 (2003).Google Scholar
3.Chen, C. and Liang, S.: Electromigration issues in lead-free solder joints. J. Mater. Sci. Mater. Electron. 18(1), 259 (2007).CrossRefGoogle Scholar
4.Chan, Y. and Yang, D.: Failure mechanisms of solder interconnects under current stressing in advanced electronic packages. Prog. Mater. Sci. 55(5), 428 (2010).CrossRefGoogle Scholar
5.Hu, Y., Lin, Y., Kao, C., and Tu, K.: Electromigration failure in flip chip solder joints due to rapid dissolution of copper. J. Mater. Res. 18(11), 2544 (2003).Google Scholar
6.Lee, K., Kim, K.S., Yamanaka, K., Tsukada, Y., Kuritani, S., Ueshima, M., and Suganuma, K.: Effects of the crystallographic orientation of Sn on the electromigration of Cu/Sn-Ag-Cu/Cu ball joints. J. Mater. Res. 26(3), 467 (2011).CrossRefGoogle Scholar
7.Yamanaka, K., Tsukada, Y., and Suganuma, K.: Studies on solder bump electromigration in Cu/Sn-3Ag-0.5Cu/Cu system. Microelectron. Reliab. 47(8), 1280 (2007).CrossRefGoogle Scholar
8.Kuo, S. and Lin, K.: The hillock formation in a Cu/Sn-9Zn/Cu lamella upon current stressing. J. Electron. Mater. 36(10), 1378 (2007).Google Scholar
9.Hung, Y. and Chen, C.: Electromigration of Sn-9wt.%. Zn solder. J. Electron. Mater. 37(6), 887 (2008).CrossRefGoogle Scholar
10.Chen, C., Chen, L., and Lin, Y.: Electromigration-induced Bi segregation in eutectic SnBi solder joint. J. Electron. Mater. 36(2), 168 (2007).Google Scholar
11.He, H., Xu, G., and Guo, F.: Effect of small amount of rare earth addition on electromigration in eutectic SnBi solder reaction couple. J. Mater. Sci. 44(8), 2089 (2009).CrossRefGoogle Scholar
12.Shao, W., Mhaisalkar, S.G., Sritharan, T., Vairagar, A.V., Engelmann, H.J., Aubel, O., Zschech, E., Gusak, A.M., and Tu, K.N.: Direct evidence of Cu/cap/liner edge being the dominant electromigration path in dual damascene Cu interconnects. Appl. Phys. Lett. 90(5), 052106 (2007).CrossRefGoogle Scholar
13.Yeh, E., Choi, W., Tu, K., Elenius, P., and Balkan, H.: Current-crowding-induced electromigration failure in flip chip solder joints. Appl. Phys. Lett. 80(4), 580 (2002).Google Scholar
14.Lu, M., Shih, D., Lauro, P., Goldsmith, C., and Henderson, D.: Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders. Appl. Phys. Lett. 92(21), 211909 (2008).CrossRefGoogle Scholar
15.Shimizu, K., Nakanishi, T., Karasawa, K., Hashimoto, K., and Niwa, K.: Solder joint reliability of indium-alloy interconnection. J. Electron. Mater. 24(1), 39 (1995).Google Scholar
16.Shieu, F.S., Chen, C.F., Sheen, J.G., and Chang, Z.C.: Intermetallic phase formation and shear strength of a Au-In microjoint. Thin Solid Films 346(1-2), 125 (1999).Google Scholar
17.Liu, Y. and Chuang, T.: Interfacial reactions between liquid indium and Au-deposited substrates. J. Electron. Mater. 29(4), 405 (2000).CrossRefGoogle Scholar
18.Chuang, R.W. and Lee, C.C.: High-temperature non-eutectic indium-tin joints fabricated by a fluxless process. Thin Solid Films 414(2), 175 (2002).CrossRefGoogle Scholar
19.Sharif, A. and Chan, Y.: Effect of indium addition in Sn-rich solder on the dissolution of Cu metallization. J. Alloy. Compd. 390(1-2), 67 (2005).CrossRefGoogle Scholar
20.Reddy, K.V. and Prasad, J.J.B.: Electromigration in indium thin films. J. Appl. Phys. 55(6), 1546 (1983).CrossRefGoogle Scholar
21.Yamanaka, K., Tsukada, Y., and Suganuma, K.: Solder electromigration in Cu/In/Cu flip chip joint system. J. Alloy. Compd. 437(1-2), 186 (2007).CrossRefGoogle Scholar
22.Daghfal, J. and Shang, J.: Current-induced phase partitioning in eutectic indium-tin Pb-free solder interconnect. J. Electron. Mater. 36(10), 1372 (2007).Google Scholar
23.Chuang, Y.C. and Liu, C.Y.: Thermomigration in eutectic SnPb alloy. Appl. Phys. Lett. 88(17), 174105 (2006).Google Scholar
24.Wu, A.T. and Sun, K.: Determination of average failure time and microstructural analysis of Sn-Ag-Bi-In solder under electromigration. J. Electron. Mater. 38(12), 2780 (2009).CrossRefGoogle Scholar
25.Choi, W., Yeh, E., and Tu, K.: Mean-time-to-failure study of flip chip solder joints on Cu/Ni (V)/Al thin-film under-bump-metallization. J. Appl. Phys. 94(9), 5665 (2003).CrossRefGoogle Scholar
26.Lee, T., Tu, K., and Frear, D.: Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization. J. Appl. Phys. 90(9), 4502 (2001).Google Scholar
27.Agarwal, R., Ou, S., and Tu, K.: Electromigration and critical product in eutectic SnPb solder lines at 100 °C. J. Appl. Phys. 100(2), 024909 (2009).Google Scholar
28.Laurila, T., Vuorinen, V., and Kivilahti, J.: Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng., R 49(1-2), 1 (2005).Google Scholar
29.Massalski, T.B.: Binary Alloy Phase Diagrams, (ASM International, Materials Park, OH, 1996).Google Scholar
30.Liu, X., Liu, H., Ohnuma, I., Kainuma, R., Ishida, K., Itabashi, S., Kameda, K., and Yamaguchi, K.: Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-In-Sn system. J. Electron. Mater. 30(9), 1093 (2001).Google Scholar
31.Sawatzky, A.: Diffusion of indium in tin single crystals. J. Appl. Phys. 29(9), 1303 (1958).CrossRefGoogle Scholar
32.Huang, F. and Huntington, H.: Diffusion of Sb124, Cd109, Sn113, and Zn65 in tin. Phys. Rev. B 9(4), 1479 (1974).CrossRefGoogle Scholar
33.Dyson, B.F., Anthony, T.R., and Turnbull, D.: Interstitial diffusion of copper in tin. J. Appl. Phys. 38(8), 3408 (1967).Google Scholar
34.Tseng, H.W., Lu, C.T., Hsiao, Y.H., Liao, P.L., Chuang, Y.C., Chung, T.Y., and Liu, C.Y.: Electromigration-induced failures at Cu/Sn/Cu flip-chip joint interfaces. Microelectron. Reliab. 50(8), 1159 (2010).CrossRefGoogle Scholar
35.Yeh, D. and Huntington, H.: Extreme fast-diffusion system: Nickel in single-crystal tin. Phys. Rev. Lett. 53(15), 1469 (1984).Google Scholar
36.Telang, A., Bieler, T., Lucas, J., Subramanian, K., Lehman, L., Xing, Y., and Cotts, E.: Grain-boundary character and grain growth in bulk tin and bulk lead-free solder alloys. J. Electron. Mater. 33(12), 1412 (2004).CrossRefGoogle Scholar
37.Seo, S.K., Cho, M.G., and Lee, H.M.: Crystal orientation of β-Sn grain in Ni(P)/Sn-0.5Cu/Cu and Ni(P)/Sn-1.8Ag/Cu joints. J. Mater. Res. 25(10), 1950 (2010).CrossRefGoogle Scholar
38.Park, S., Dhakal, R., Lehman, L., and Cotts, E.: Measurement of deformations in SnAgCu solder interconnects under in situ thermal loading. Acta Mater. 55(9), 3253 (2007).Google Scholar
39.Telang, A.U., Bieler, T.R., Zamiri, A., and Pourboghrat, F.: Incremental recrystallization/grain growth driven by elastic strain energy release in a thermomechanically fatigued lead-free solder joint. Acta Mater. 55(7), 2265 (2007).CrossRefGoogle Scholar
40.Wu, A.T., Tu, K., Lloyd, J., Tamura, N., Valek, B., and Kao, C.: Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction. Appl. Phys. Lett. 85(13), 2490 (2004).Google Scholar
41.Lloyd, J.: Electromigration induced resistance decrease in Sn conductors. J. Appl. Phys. 94(10), 6483 (2003).CrossRefGoogle Scholar
42.Wu, A.T., Gusak, A.M., Tu, K.N., and Kao, C.R.: Electromigration-induced grain rotation in anisotropic conducting beta tin. Appl. Phys. Lett. 86(24), 241902 (2005).CrossRefGoogle Scholar
43.Wu, A.T. and Hsieh, Y.C.: Direct observation and kinetic analysis of grain rotation in anisotropic tin under electromigration. Appl. Phys. Lett. 92(12), 121921 (2008).CrossRefGoogle Scholar