Hostname: page-component-6b989bf9dc-476zt Total loading time: 0 Render date: 2024-04-14T08:08:05.041Z Has data issue: false hasContentIssue false

Physical properties and lattice dynamics of bixbyite-type V2O3

Published online by Cambridge University Press:  15 May 2017

Dominik A. Weber*
Affiliation:
Institut für Chemie, Tecnische Universität Berlin, 10623 Berlin, Germany; and Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
Christian Schwickert
Affiliation:
Institut für Anorganische und Analytische Chemie, Universität Münster, 84149 Münster, Germany
Anatoliy Senyshyn
Affiliation:
Heinz Maier-Leibnitz Zentrum, Technische Universität München, 85748 Garching, Germany
Martin Lerch
Affiliation:
Institut für Chemie, Tecnische Universität Berlin, 10623 Berlin, Germany
Rainer Pöttgen
Affiliation:
Institut für Anorganische und Analytische Chemie, Universität Münster, 84149 Münster, Germany
*
a) Address all correspondence to this author. e-mail: dominik.weber@phys.chemie.uni-giessen.de
Get access

Abstract

Some time ago, we reported the synthesis of bixbyite-type V2O3, a new metastable polymorph of vanadium sesquioxide. Since, a number of investigations followed, dealing with different aspects like electronic and magnetic properties of the material, the deviation from ideal stoichiometry or the preparation of nanocrystals as oxygen storage material. However, most of the physical properties were only evaluated on a theoretical basis. Here, we report the lattice dynamics and physical properties of bixbyite-type V2O3 bulk material, which we acquired from physical property measurements and neutron diffraction experiments over a wide temperature range. Besides attributing different possible orientations of the magnetic moments for V1 and V2 to the identified antiferromagnetic (AFM) ground state with a Néel temperature of 38.1(5) K, we use a first order Grüneisen approximation to determine lattice-dependent parameters for the relatively stiff cubic lattice, and, amongst others identify the Debye temperature to be as low as 350 ± 65 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Michael E. McHenry

References

REFERENCES

Muster, J., Kini, G.J., Park, J.G., and Burghard, M.: Electrical transport through individual vanadium pentoxide nanowires. Adv. Mater. 12, 420 (2000).3.0.CO;2-7>CrossRefGoogle Scholar
Liu, P., Lee, S-H., Cheong, H.M., Tracy, C.E., Pitts, J.R., and Smith, R.D.: Stable Pd/V2O5 optical H2 sensor. J. Electrochem. Soc. 149, H76 (2002).Google Scholar
Haber, J.: Fifty years of my romance with vanadium oxide catalysts. Catal. Today 142, 100 (2009).Google Scholar
Hess, C.: Nanostructured vanadium oxide model catalysts for selective oxidation reactions. ChemPhysChem 10, 319 (2009).CrossRefGoogle ScholarPubMed
Prosini, P.P., Xia, Y., Fujieda, T., Vellone, R., Shikano, M., and Sakai, T.: Performance and capacity fade of V2O5–lithium polymer batteries at a moderate–low temperature. Electrochim. Acta 46, 2623 (2001).Google Scholar
Shi, Y., Zhang, Z.J., Wexler, D., Chou, S., Gao, J., Abruna, H.D., Li, H., Liu, H., Wu, Y., and Wang, J.: Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. J. Power Sources 275, 392 (2015).Google Scholar
Jiang, L., Qu, Y., Ren, Z., Yu, P., Zhao, D., Zhou, W., Wang, L., and Fu, H.: In situ carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 1595 (2015).Google Scholar
Mott, N.F.: Metal-insulator Transition (Taylor and Francis Ltd, London, 1974).Google Scholar
Held, K., Keller, G., Eyert, V., Vollhardt, D., and Anisimov, V.I.: Mott–Hubbard metal-insulator transition in paramagnetic V2O3: An LDA + DMFT(QMC) study. Phys. Rev. Lett. 86, 5345 (2001).Google Scholar
Hansmann, P., Toschi, A., Sangiovanni, G., Saha-Dasgupta, T., Lupi, S., Marsi, M., and Held, K.: Mott–Hubbard transition in V2O3 revisited. Phys. Status Solidi B 250, 1251 (2013).Google Scholar
Finger, L.W. and Hazen, R.M.: Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J. Appl. Phys. 51, 5362 (1980).Google Scholar
McWhan, D.B. and Remeika, J.B.: Metal-insulator transition in (V1−x Cr x )2O3 . Phys. Rev. B: Condens. Matter Mater. Phys. 2, 3734 (1970).CrossRefGoogle Scholar
Dernier, P.D. and Marezio, M.: Crystal structure of the low-temperature antiferromagnetic phase of V2O3 . Phys. Rev. B: Condens. Matter Mater. Phys. 2, 3771 (1970).Google Scholar
Moon, R.M.: Antiferromagnetism in V2O3 . Phys. Rev. Lett. 25, 527 (1970).Google Scholar
Weber, D., Stork, A., Nakhal, S., Wessel, C., Reimann, C., Hermes, W., Müller, A., Ressler, T., Pöttgen, R., Bredow, T., Dronskowski, R., and Lerch, M.: Bixbyite-type V2O3: A metastable polymorph of vanadium sesquioxide. Inorg. Chem. 50, 6762 (2011).Google Scholar
Bergerud, A., Buonsanti, R., Jordan-Sweet, J.L., and Milliron, D.J.: Synthesis and phase stability of metastable bixbyite V2O3 colloidal nanocrystals. Chem. Mater. 25, 3172 (2013).Google Scholar
Xu, Y., Zheng, L., Wu, C., Qi, F., and Xie, Y.: New-phased metastable V2O3 porous urchinlike micronanostructures: Facile synthesis and application in aqueous lithium ion batteries. Chem. –Eur. J. 17, 384 (2011).Google Scholar
Bergerud, A., Selbach, S.M., and Milliron, D.J.: Oxygen incorporation and release in metastable bixbyite V2O3 nanocrystals. ACS Nano 10, 6147 (2016).Google Scholar
Reimann, C., Weber, D., Lerch, M., and Bredow, T.: Nonstoichiometry in bixbyite-type vanadium sesquioxide. J. Phys. Chem. C 117, 20164 (2013).Google Scholar
Wessel, C., Reimann, C., Müller, A., Weber, D., Lerch, M., Ressler, T., Bredow, T., and Dronskowski, R.: Electronic structure and thermodynamics of V2O3 polymorphs. J. Comput. Chem. 33, 2102 (2012).Google Scholar
Lüdtke, T., Weber, D., Schmidt, A., Müller, A., Reimann, C., Becker, N., Bredow, T., Dronskowski, R., Ressler, T., and Lerch, M.: Synthesis and characterization of metastable transition metal oxides and oxide nitrides. Z. Kristallogr. 232(1–3), 314 (2017).CrossRefGoogle Scholar
Nakhal, S., Weber, D., Irran, E., Lerch, M., Schwarz, B., and Ehrenberg, H.: Synthese und Kristallstrukturen der neuen Metallfluoridhydrate V2F6·4H2O und Mn3F8·2H2O. Z. Anorg. Allg. Chem. 636, 2061 (2010).Google Scholar
Hölzel, M., Senyshyn, A., and Dolotko, O.: SPODI: High resolution powder diffractometer. Journal of Large-Scale Research Facilities 1, A5 (2015).Google Scholar
Hölzel, M., Senyshyn, A., Jünke, N., Boysen, H., Schmahl, W., and Fuess, H.: High-resolution neutron powder diffractometer SPODI at research reactor FRM II. Nucl. Instrum. Methods Phys. Res., Sect. A 667, 32 (2012).Google Scholar
Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993).Google Scholar
Rodriguez-Carvajal, J.: Recent developments of the program FULLPROF. Commission on Powder Diffraction Newsletter 26, 12 (2001).Google Scholar
Kini, N.S., Strydom, A.M., Jeevan, H.S., Geibel, C., and Ramakrishnan, S.J.: Transport and thermal properties of weakly ferromagnetic Sr2IrO4 . J. Phys.: Condens. Matter 18, 8205 (2006).Google Scholar
Vočadlo, L., Knight, K.S., Price, G.D., and Wood, I.G.: Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction. Phys. Chem. Miner. 29, 132 (2002).Google Scholar
Semiconductors, ‘Non-Tetrahedrally Bonded Binary Compounds II’, Landolt-Börnstein, Group III Condensed Matter Subvolume D, Vol. 41, O. Madelung, U. Rössler, and M. Schulz, eds. (Springer, New York, USA, 1969).Google Scholar
Bertaut, E.F.: Representation analysis of magnetic structures. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 24, 217 (1968).Google Scholar
Hovestreydt, E., Aroyo, I., Sattler, S., and Wondratschek, H.: KAREP—A program for calculating irreducible space-group representations. J. Appl. Crystallogr. 25, 544 (1992).Google Scholar
Shirane, G.: A note on the magnetic intensities of powder neutron diffraction. Acta Crystallogr. 12, 282 (1959).Google Scholar
Lueken, H.: Magnetochemie. Eine Einführung in Theorie und Praxis (Teubner, Stuttgart, Germany, 1999).Google Scholar