Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T04:30:38.967Z Has data issue: false hasContentIssue false

α-Helical Polypeptide Materials

Published online by Cambridge University Press:  15 February 2011

E. P. Enriquez
Affiliation:
Dept. of Chemistry, University of North Carolina, Chapel Hill, NC 27599–3290
M. Y. Jin
Affiliation:
Dept. of Chemistry, University of North Carolina, Chapel Hill, NC 27599–3290
R. C. Jarnagin
Affiliation:
Dept. of Chemistry, University of North Carolina, Chapel Hill, NC 27599–3290
E. T. Samulski
Affiliation:
Dept. of Chemistry, University of North Carolina, Chapel Hill, NC 27599–3290
Get access

Abstract

Poly(γ-benzyl-L-glutamate) (PBLG) may be derivatized on its periphery by covalently attaching χ-active NLO chromophores at the termini of its sidechains and thereby give a new class of SHG materials. The inherent liquid crystalline properties of concentrated solutions of α-helical PBLG may be exploited to establish unique supramolecular structures prior to E-field poling. When PBLG is derivatized at its N-terminus with lipoic acid, it will self-assemble on gold to give a thin film. Angle-dependent XPS, ellipsometry, contact angle measurements, and grazing angle IR reflection-absorption spectroscopy give quantitative information about the orientation of the polypeptide α-helices relative to the substrate surface. Consequently, polypeptides, in particular, Merrifield-synthesized or recombinant DNA-expressed synthetic polypeptides, present a novel fabrication route to thin films wherein molecular-engineered functionalities (chemical, electrical, or optically active species) may be encoded into the macromolecule's primary structure and subsequently expressed spatially via the spontaneous self-organization of these rod-like polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Based in part on Jin's, M. Y. Ph. D. Thesis, University of North Carolina at Chapel Hill, 1991.Google Scholar
2. Enriquez, E. P., Gray, K. H., Guarisco, V. F., Linton, R. W., Mar, K. D., and Samulski, E. T., J. Vac. Sci. Technol. A 10, 2775 (1992).Google Scholar
3. Pauling, L., Corey, R. B., and Branson, H. R., Proc. Natl. Acad. Sci., USA 37, 205 (1951).Google Scholar
4. Block, H., Poly(γ-Benzyl-L-glutamate) and Other Glutamic Acid Containing Polymers (Gordon and Breach, New York, 1983); and references cited therein.Google Scholar
5. Perutz, M. F., Nature 167, 1053 (1951).Google Scholar
6. Dupré, D. B. and Samulski, E. T. in Liquid Crystals: The Fourth State of Matter, edited by Saeva, F. D. (Marcel and Dekker, New York, 1979), chap. 5.Google Scholar
7. McMaster, T. J., Carr, H. J., Miles, M. J., Cairns, P., and Morris, V. J., Macromolecules 24, 1428 (1991); J. Vac. Sci. Technol. A 8, 648 (1990).Google Scholar
8. Breen, J. J. and Flynn, G. W., J. Phys. Chem. 96,6825 (1992).Google Scholar
9. Merrifield, B., Science 232, 341 (1986).Google Scholar
10. See for example, Creel, H. S., Fournier, M. J., Mason, T. L., and Tirrell, D. A., Macromolecules 24, 1213 (1991).Google Scholar
11. See for example, Inai, Y., Sisido, M., and Imanishi, Y., J. Phys. Chem. 95, 3847 (1991).Google Scholar
12. Watanabe, J., Ono, H., Uematsu, I., and Abe, A., Macromolecules 18, 1241 (1985).Google Scholar
13. Coda, A. and Pandarese, F., J. Appl. Cryst. 9, 193 (1976).Google Scholar
14. Tam, W., Guerin, B., Calabrese, J. C., and Stevenson, S. H., Chem. Phys. Lett. 154, 93 (1989).Google Scholar
15. Samulski, E. T. and Tobolsky, A. V., Macromolecules 1, 555 (1968).Google Scholar
16. Michl, J. and Thulstrup, E. W., Spectroscopy with Polarized Light (VCH, New York, 1986).Google Scholar
17. Prasad, P. N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers (John Wiley & Sons, New York, 1991).Google Scholar
18. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-assembly (Academic Press, New York, 1991); and references cited therein.Google Scholar
19. Bain, C. D., Troughton, E. B., Tao, Y., Evall, J., Whitesides, G. M., and Nuzzo, R. G., J. Am. Chem. Soc. 111, 321 (1989); C. D. Bain, H. A. Biebuyck, and G. M. Whitesides, Langmuir 5, 723 (1989).Google Scholar
20. See for example, Thompson, N. L. and Palmer, A. G. III, Comments Mol. Cell. Biophys. 5, 39 (1988).Google Scholar
21. Takenaka, T., Harada, K., and Matsumoto, M., J. Colloid & Interface Sci. 73, 569 (1980).Google Scholar
22. Jones, R. and Tredgold, R. H., J. Phys. D: Appl. Phys. 21, 449 (1988).Google Scholar
23. Enriquez, E. P. and Samulski, E. T., Mat. Res. Soc. Symp. Proc. 255, 423 (1992).Google Scholar
24. Tsuboi, M., J. Polymer Sci. 59,139 (1962).Google Scholar
25. Greenler, R. G., J. Chem. Phys. 44, 310 (1966).Google Scholar