Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T03:44:41.355Z Has data issue: false hasContentIssue false

Fabrication of two-dimensional Si/Ge nanowires and nanorings

Published online by Cambridge University Press:  01 February 2011

Midori Kawamura
Affiliation:
Institut für Schichten und Grenzflächen, ISG 3, Forschungszentrum Jülich, 52425 Jülich, Germany
Bert Voigtländer
Affiliation:
Institut für Schichten und Grenzflächen, ISG 3, Forschungszentrum Jülich, 52425 Jülich, Germany
Neelima Paul
Affiliation:
Institut für Schichten und Grenzflächen, ISG 3, Forschungszentrum Jülich, 52425 Jülich, Germany
Vasily Cherepanov
Affiliation:
Institut für Schichten und Grenzflächen, ISG 3, Forschungszentrum Jülich, 52425 Jülich, Germany
Get access

Abstract

We show that two-dimensional Si/Ge nanostructures with a thickness of a single atomic layer can be imaged with chemical sensitivity using a scanning tunneling microscope (STM). An atomic layer of Bi terminating the surface is used to distinguish between Si and Ge. This distinction between Si and Ge enabled us to fabricate two-dimensional Si/Ge nanostructures in a controlled way by self-organized growth. Si/Ge nanoring structures consisting of alternating Si and Ge rings having a width of ∼5 nm were grown around a Si core on a Si(111) substrate by molecular beam epitaxy (MBE). The thickness of the Si and Ge rings is only one atomic layer (0.3 nm). Alternating Si/Ge nanowires with a width of ∼3.5 nm and a thickness of 0.3 nm were also fabricated using alternating Si/Ge deposition in the step flow growth mode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Voigtländer, B. Surf. Sci. Rep. 43 (2001) 127.Google Scholar
[2] Qin, X.R., Swartzentruber, B.S, and Lagally, M.G., Phy. Rev. Lett. 84 (2000) 4645.Google Scholar
[3] Lin, D.-S., Wu, J.-L., Pan, S.-Y., and Chiang, T. C., Phys. Rev. Lett. 90 (2003) 046102.Google Scholar
[4] Kawamura, M., Paul, N., Cherepanov, V., and Voigtländer, B., Phy. Rev. Lett. 91 (2003) 096102.Google Scholar
[5] Gogol, C.A., and Reagan, S.H., J. Vac. Sci. Technol. A1 (1983) 252.Google Scholar
[6] Ryland, R.G., Hasegawa, S., and Williams, E.D., Surface Sci. 345 (1996) 222 Google Scholar