Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:26:10.127Z Has data issue: false hasContentIssue false

Steps on the (110) Surface of INP

Published online by Cambridge University Press:  15 February 2011

Yong Liang
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287-1504, U.S.A. Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.
William E. Packard
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287-1504, U.S.A.
John D. Dow
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287-1504, U.S.A.
Get access

Abstract

Three types of steps are observed on the cleaved InP(110) surface, using atomicresolution ultra-high vacuum (UHV) scanning tunneling microscopy (STM). The step edges are oriented along the (110), (111), and (112) directions. Atomic models of monatomic-height (111) and (112) steps indicate that the edges of each of these unrelaxed steps should have pairs of dangling bonds. We propose that the bonds dimerize, causing the edges to relax and form periodic structures along the edge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ebert, Ph., Cox, G., Poppe, U., and Urban, K., J. Ultramicroscopy, 4244, 871 (1992).CrossRefGoogle Scholar
[2] Liang, Y., Ph. D.Thesis, University of Notre Dame, 1991. Available from University Microfilms, Ann Arbor, Michigan.Google Scholar
[3] Liang, Y., Packard, W. E., and Dow, J. D., J. Vac. Sci. Technol. B 9, 730 (1991).CrossRefGoogle Scholar
[4] Liang, Y., Packard, W. E., Dow, J. D., and Lapeyre, G. J., to be published.Google Scholar
[5] See, for example, the polyatomic step in Fig. 2.Google Scholar
[6] Tong, S. Y., Lubinsky, A. R., Mrstik, B. J., and Van Hove, M. A., Phys. Rev. B 17, 3303 (1978); D. J. Chadi, Phys. Rev. B 18, 1800 (1978); D. J. Chadi, Phys. Rev. 19, 2074 (1979). See also the recent controversy over whether the surface relaxation angle depends on ionicity or not: Arguing for a dependence on ionicity are R. V. Kasowski, M.-H. Tsai, and J. D. Dow, J. Vac. Sci. Technol., B5, 953 (1987); M.-H. Tsai, J. D. Dow, R.-P. Wang, and R. V. Kasowski, Phys. Rev. B 40, 9818 (1989); Superlatt. Microstruct. 6, 431 (1989). J. L. A. Alves, J. Hebenstreit, and M. Scheffler, Phys. Rev. B 44, 6188 (1991), supported by low-energy positron diffraction data of X. M. Chen, G. R. Brandes, K. F. Canter, C. B. Duke, D. Paton, W. K. Ford, and D. L. Lessor, Bull. Amer. Phys. Soc. 37, 167 (1992). Arguing against such a dependence are C. B. Duke, R. J. Meyer, and P. Mark, J. Vac. Sci. Technol. 17, 971 (1980); W. Chen, M. Dumas, S. Ahsan, A. Kahn, C. B. Duke, and A. Paton, J. Vac. Sci. Technol. A 10, 2071 (1992); and A. Kahn, S. Ahsan, W. Chen, M. Dumas, C. B. Duke, and A. Paton, Phys. Rev. Letters 68, 3200 (1992).CrossRefGoogle Scholar