Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T11:56:03.488Z Has data issue: false hasContentIssue false

A sporomorph ecogroup model for the Northwest European Jurassic - Lower Cretaceousi: concepts and framework

Published online by Cambridge University Press:  01 April 2016

O.A. Abbink*
Affiliation:
TNO-NITG, P.O. Box 80015, NL-3508TA Utrecht, the Netherlands:, o.abbink@nitg.tno.nl
J.H.A. Van Konijnenburg-Van Cittert
Affiliation:
Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, NL-3584 CD Utrecht, the Netherlands:j.h.a.vankonijnenburg@bio.uu.nl, h.visscher@bio.uu.nl National Museum of Naturl History ‘Naturalis’, P.O. Box 9517, 2300 RA Leiden, the Netherlands:konijnenburg@naturalis.nl
H. Visscher
Affiliation:
TNO-NITG, P.O. Box 80015, NL-3508TA Utrecht, the Netherlands:, o.abbink@nitg.tno.nl Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, NL-3584 CD Utrecht, the Netherlands:j.h.a.vankonijnenburg@bio.uu.nl, h.visscher@bio.uu.nl
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on recent vegetation distribution and an integration of macropalaeobotanical and palynological information, a palaeocommunity model is explored that may permit detailed interpretations of quantitative sporomorph distribution patterns in the Jurassic and Early Cretaceous of NW-Europe in terms of changes in palaeoenvironment (sea-level, climate). The conceptual model is based on the recognition of Sporomorph Ecogroups (SEGs) that reflect broad co-existing plant communities, viz. upland, lowland, river, pioneer, coastal, and tidally-influenced SEGs. In successive palynological assemblages, shifts in the relative abundance of SEGs are thought to be indicators of sea-level changes. Climatic changes may be recognised through significant shifts within the quantitative composition of individual SEGs.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Abbink, O.A., 1998. Palynological investigations in the Jurassic of the North Sea region. LPP Contribution Series 8: 192 pp.Google Scholar
Abbink, O.A., Targarona, J., Brinkhuis, H. & Visscher, H., 2001. Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the Southern North Sea. Global and Planetary Change, 30: 231–256.Google Scholar
Alvin, K.L., 1982. Cheirolepidiaceae: Biology, structure and palaeoecology. Review of Palaeobotany and Palynology 37: 71–98.Google Scholar
Bakker, K., 1985. Algemene inleiding. In: Bakker, K. (ed.), Inleiding tot de oecologie, Utrecht: 2–24.Google Scholar
Balme, B.E., 1995. Fossil in situ spores and pollen grains: An annotated catalogue. Review of Palaeobotany and Palynology 87: 1–323.Google Scholar
Barale, G. & Flamand, D., 1982. La paléoflore de l’Oxfordien de la région de Châteauroux (Indre). Bulletin de Bureau de Recherches Géologiques et Minières 2, 1: 255–261.Google Scholar
Batten, D.J., 1973. Palynology of Early Cretaceous soil beds and associated strata. Palaeontology 16: 399–424.Google Scholar
Batten, D.J., 1975. Wealden palaeoecology from the distribution of plant fossils. Proceedings of the Geologist’s Association, 85: 433–458.Google Scholar
Batten, D.J., 1976. Wealden of the Weald - a new model. Proceedings of the Geologist’s Association 87: 431–433.Google Scholar
Batten, D.J., 1978. Early Cretaceous to Middle Jurassic miospores and palynofacies of the Northwest European continental shelf. In: Thusu, B. (ed.), Distribution of biostratigraphically dinoflagellate cysts and miospores from the Northwest European continental shelf and adjacent area. Publication of the Institutt for Kontinentalsokkelundersoekelser 100: 97–100.Google Scholar
Birkelund, T., Thusu, B. & Vigran, J., 1978. Jurassic-Cretaceous biostratigraphy of Norway, with comments on the British Rasenia cymodoce Zone. Palaeontology 21: 31–63.Google Scholar
Birks, H.J.B. & Birks, H.H., 1980. Quaternary palaeoecology, Arnold, London: 289 pp.Google Scholar
Boulter, M.C. & Windle, T., 1993. A reconstruction of some Middle Jurassic vegetation in Northern Europe. Special Papers in Palaeontology 49: 125–154.Google Scholar
Brenner, G.J., 1963. The spores and pollen of the Potamic Group of Maryland. Department of Geology, Minerology and Water Resources Bulletin 27: 1–215.Google Scholar
Brinkhuis, H., 1994. Late Eocene to Early Oligocene dinoflagellate cysts from the Priabonian type-area (Northeast Italy); biostratigraphy and palaeoenvironmental interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 121–163.CrossRefGoogle Scholar
Brinkhuis, H. & Zachariasse, W.J., 1988. Dinoflagellate cysts, sealevel changes and planktonic formaninifera across the K/T boundary at Al Haria, Northwest Tunisia. Marine Micropaleontology 13: 153–191.CrossRefGoogle Scholar
Broutin, J. & Pons, D., 1975. Nouvelles précisions sur la morphologie et la phytodermologie de quelques rameaux du genre Frenelopsis Schenk. Comptes rendus du 100e Congrès National des Sociétés Savantes, Paris 1975, II: 29–46.Google Scholar
Brown, S., 1990. Jurassic. In: Glennie, K.W. (ed.), Introduction to the Petroleum Geology of the North Sea: 219–254.Google Scholar
Brugman, W A., van Bergen, P. F. & Kerp, J. H. F., 1994. A quantitative approach to Triassic palynology: the Lettenkeuper of the Germanic Basin as an example. In: Traverse, A. (ed.), Sedimentation of Organic Particles. Cambridge University Press, Cambridge: 409–429.Google Scholar
Brush, & Brush, , 1994. Transport and deposition of pollen in an estuary: signature of the landscape. In: Traverse, A. (ed.), Sedimentation of Organic Particles. Cambridge University Press, Cambridge: 33–46.Google Scholar
Burger, D., 1966. Palynology of the uppermost Jurassic and lowermost Cretaceous strata in the eastern Netherlands. Leidse Geologische Mededelingen, 35: 209–276.Google Scholar
Chaloner, W.G. & Muir, M., 1968. Spores and Floras. In: Murchison, D. and Westall, T.S. (eds). Coal and coal bearing strata. Oliver and Boyd, Edinburgh: 127–146.Google Scholar
Chapman, V.J., 1977. Ecosystems of the world 1. Wet coastal ecosystems. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York: 428 pp.Google Scholar
Chmura, G.L., 1994. Palynomorph distribution in marsh environments in the modern Mississippi Delta plain. Bulletin of the Geological Society of America 106: 105–714.Google Scholar
Couper, R.A., 1958. British Mesozoic microspores and pollen grains. A systematic and stratigraphic study. Palaeontographica, Abteilung B 103:75–179.Google Scholar
DeGraciansky, P.-C., Hardenbol, J., Jacquin, T., Vail, P.R. & Farley, M.B., 1999. Jurassic sequence chronostratigraphy/ biochronostratigraphy. In: De, Graciansky et al. (eds), Mesozoic-Cenozoic Sequence Stratigraphy of European Basins. Special Publication of the Society of Economists, Paleontologists and Mineralogists 60: Charts 6 and 7.Google Scholar
Doludenko, M.P. & Reymanowna, M., 1978. Frenelopsis harrisii sp. nov. from the Cretaceous of Tajikistan, USSR. Acta Palaeobotanica 19:3–12.Google Scholar
Dörhöfer, G., 1977. Palynologie und Stratigraphic der Bückeberg-Formation (Berriasium-Valanginium). Geologisches Jahrbuch Serie A, 42: 3–122.Google Scholar
Döring, H., 1965. Die sporenpaläontologische Gliederung des Wealden in Westmecklenburg. Geologie, 14, Beihefte 47: 1–118.Google Scholar
Döring, H., 1966a. Die sporenstratigraphischen Gliederung des Unterkreide im nördlichen Mitteleuropa. In: Döring, H., Krutzsch, W., Mai, D.H., & Schulz, E., Erläuterungen zu den sporenstratigraphischen Tabellen vom Zechstein bis zum Oligozän. Abhandlungen des Zentrales Geologisches Institut Berlin 5:46–60.Google Scholar
Döring, H., 1966b. Die sporenstratigraphischen Gliederung des Malm im nördlichen Mitteleuropa. In: Döring, H., Krutzsch, W., Mai, D.H. & Schulz, E. (eds), Erläuterungen zu den sporenstratigraphischen Tabellen vom Zechstein bis zum Oligozän. Abhandlungen des Zentrales Geologisches Institut Berlin 5: 61–78.Google Scholar
Döring, H., 1976. Biostratigraphische Untersuchungen im Malm und Wealden der Insel Rügen. Jahrbuch für Geologie 5/6: 711–783.Google Scholar
Fensome, R.A., 1983. Miospores from the Jurassic - Cretaceous boundary beds, Aklivik Range, Northwest Territories, Canada. Ph.D. Thesis, University of Saskatchewan: 762 pp.Google Scholar
Filatoff, J., 1975. Jurassic palynology of the Perth Basin, Western Australia. Palaeontographica, Abteilung B, 154: 1–113.Google Scholar
Filatoff, J. & Price, P.L., 1988. A pteridacean spore lineage in the Australian Mesozoic. Memoirs of the Association of Australian Palaeontologists 5: 89–124.Google Scholar
Frakes, L.A., Francis, J.E. & Syktus, J.I., 1992. Climate Modes of the Phanerozoic, Cambridge University Press: 274 pp.Google Scholar
Francis, J.E., 1983. The dominant conifer of the Jurassic Purbeck Formation, England. Palaeontology 26: 277–294.Google Scholar
Francis, J.E., 1984. The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. Palaeogeography, Palaeoclimatology, Palaeoecology 48: 285–307.Google Scholar
Galloway, W.E., 1989. Genetic Stratigraphic Sequences in Basin Analysis I, Architecture and Genesis of Flooding-Surface Bounded Depositional Units. Bulletin of the American Association of Petroleum Geologists 73: 125–142.Google Scholar
Grime, J.P., 1979. Plant Strategies & Vegetation Processes, Sheffield: 222 pp.Google Scholar
Guy-Ohlson, D.J.E., 1971. Palynological investigations in the Middle Jurassic of the Vilhelmsfält boring, southern Sweden. Publications of the Institute of Mineralogy, Palaeontology and Quaternary Geology, University of Lund, Sweden 168: 104 pp.Google Scholar
Guy-Ohlson, D.J.E., 1986. Jurassic palynology of the Vilhelmsfält Bore No. 1, Scania, Sweden. Toarcian-Aalenian. Swedish Museum Natural History, Section Palaeobotany: 127 pp.Google Scholar
Hallam, A., 1985 A review of Mesozoic climates. Journal of the Geological Society of London 142: 433–445.Google Scholar
Hallam, A., 1994. Jurassic climates as inferred from the sedimentary and fossil record.p.79-88. In: Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A. and Valdes, P.J. (eds), Palaeoclimates and their Modelling. The Royal Society, Chapman, London: 140 pp.Google Scholar
Haq, B.U., Hardenbol, J. & Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. In: Wilgus, C.K., Hastings, B.S., et al. (eds), Sea Level Changes; An Integrated Approach. Special Publication of the Society of Economists, Paleontologists and Mineralists 42: 71–108.Google Scholar
Harris, T.M., 1961. The Yorkshire Jurassic flora, I. Thallophyta-Pteridophyta. British Museum (Natural History), London: 211 pp.Google Scholar
Harris, T.M., 1964. The Yorkshire Jurassic flora, II. Caytoniales, Cycadales and Pteridosperms. British Museum (Natural History), London: 191 pp.Google Scholar
Harris, T.M., 1969. The Yorkshire Jurassic flora, III. Bennettitales. British Museum (Natural History), London: 186 pp.Google Scholar
Harris, T.M., 1973. The strange Bennettitales. 19th Sir Albert Charles Seward Memorial Lecture, 1971; Birbal Sahni Institute of Palaeobotany, Lucknow, India.Google Scholar
Harris, T.M., 1974. Williamsoniella lignieri; its pollen and the compression of spherical pollen grains. Palaeontology, 17: 125–148.Google Scholar
Harris, T.M., 1979. The Yorkshire Jurassic flora, V Coniferales. British Museum (Natural History), London: 166 pp.Google Scholar
Harris, T.M., 1981. Burnt ferns from the English Wealden. Proceedings of the Geologist’s Association 92: 47–58.Google Scholar
Harris, T.M., 1983. The stem of Pachypteris papillosa (Thomas and Bose) Harris. Botanical Journal of the Linnean Society 86: 149–159.Google Scholar
Herngreen, G.F.W., 1971. Palynology of a Wealden Section (Lower Cretaceous) in the ‘Carrière de Longueville’, the Boulonnais (France). Review of Palaeobotany and Palynology, 12: 271–302.Google Scholar
Herngreen, G.F.W. & De Boer, K.F., 1974. Palynology of Rhaetian, Liassic and Dogger strata in the Eastern Netherlands. Geologie en Mijnbouw 53: 343–368.Google Scholar
Herngreen, G.F.W., Kerstholt, S.J. & Munsterman, D.K., 2000. Callovian-Ryazanian (‘upper Jurassic’) palyno-stratigraphy of the Central North Sea Graben and Vlieland Basin, the Netherlands. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO 63: 1–99.Google Scholar
Heunisch, C., 1993. Zur Palynologie des Oberen Jura in Nordwestdeutschland. Bericht des Niedersächsischen Landesamt für Bodenforschung, Hannover: 1–37.Google Scholar
Heusser, L., 1979. Spores and pollen in the marine realm. In: Haq, B.U. and Boersma, A. (Eds). Introduction to marine micropalaeontology. Elsevier, New York: 327–339.Google Scholar
Hill, C.R., 1990. Ultrastructure of in situ fossil cycad pollen from the English Jurassic, with a description of the male cone Androstrobus balmei sp. nov. Review of Palaeobotany and Palynology 65: 165–173.Google Scholar
Hogg, N.M., 1993. A palynological investigation of the Scalby Formation (Ravenscar, Group, Middle Jurassic) and adjacent strata from the Cleveland Basin, North East Yorkshire. Ph. D. Thesis, Sheffield: 233 pp.Google Scholar
Hubbard, RnN.L.B. & Boulter, M.C., 1997. Mid Mesozoic floras and climates. Palaeontology 40: 43–70.Google Scholar
Huntley, B., 1990. Studying global change: the contribution of Quaternary palynology. Palaeogeography, Palaeoclimatology, Palaeoecology 82: 53–62.Google Scholar
Janssen, C. R., 1980. Some remarks on facts and interpretation in Quaternary palynostratigraphy. Bulletin de l’Assocation Française pour l’Etude du Quaternaire 17: 171–176.Google Scholar
Jung, W., 1974. Die Konifere Brachyphyllum nepos Saporta aus den Solnhofener Plattenkalken (unteres Untertiton), ein Halophyt. Mitteilungen der Bayerischen Staatssammlung für Palaeontogie und Historische Geologie 14: 49–58.Google Scholar
Knox, E.M., 1950. The spores of Lycopodium, Phylloglossum, Selaginella and Isoëtes and their value in the study of microfossils of Palaeozoic origin. Transactions and Proceedings of the Botanical Society Edinburgh 35: 209–357.Google Scholar
Loutit, T.S., Hardenbol, J., Vail, P.R. & Baum, G.R., 1988. Condensed sections: the key to age dating and correlation of continental margin sequences. In: Wilgus, C. K., Hastings, B. S., et al. (eds), Sea Level Changes; An Integrated Approach. Special Publication of the Society of Economists, Paleontologists and Mineralogists 42: 183–216.Google Scholar
Lundblad, B., 1950. Studies in the Rhaeto-Liassic floras of Sweden. Kungl. Svenska Vetenskapsakademiens Handlingar 4, 1, 8: 1–82.Google Scholar
Manum, S.B., Bose, M.N., and Vigran, J.O., 1991. The Jurassic flora of Andøya, Northern Norway. Review of Palaeobotany and Palynology, 68: 233–256.Google Scholar
Mohr, B.A.R., 1989. New palynological information on the age and environment of Late Jurassic and Early Cretaceous vertebrate localities of the Iberian Peninsula (eastern Spain and Portugal). Berliner Geowissenschaftlischen Abhandelungen, Reihe A 106: 291–301.Google Scholar
Morley, R.J. & Richards, K., 1993. Graminae cuticles: a key indicator of Late Cenozoic climate change in the Niger Delta. Review of Palaeobotany and Palynology, 77: 119–127.Google Scholar
Muller, J., 1959. Palynology of recent Orinoco delta and shelf sediments, reports of the Orinoco Shelf expedition, Vol. 5. Micropalaeontology 5, 1: 1–32.Google Scholar
Norris, G., 1969. Miospores from the Purbeck Beds and marine Upper Jurassic of southern England. Palaeontology 12: 574–620.Google Scholar
Partington, M.A.P., Mitchener, B.C., Milton, N.J. & Fraser, A.J., 1993a. Genetic sequence stratigraphy for the North Sea Late Jurassic and Early Cretaceous of the North Sea: distribution and prediction of Kimmeridgian-Late Ryazanian reservoirs in the North Sea and adjacent areas. In: Parker, J.R., (ed.), Petroleum Geology of Northwest Europe, Proceedings of the 4th Conference: 347–370.Google Scholar
Pedersen, K.R., Crane, P.R. & Friis, E.M., 1989. Pollen organs and seeds with Eucommiidites pollen. Grana, 28: 279–294.Google Scholar
Pedersen, K.R., Crane, P.R., Drinnan, A.N. & Friis, E.M., 1991. Fruits from the mid-Cretaceous of North America with pollen grains of the Clavatipollenites type. Grana 30: 577–590.Google Scholar
Pedersen, K.R., Friis, E.M. & Crane, P.R., 1994. Ultrastructure of pollen from Cretaceous angiosperm reproductive structures. In: Kurmann, M.H. & Doyle, J.A. (Eds), Ultrastructure of fossil spores and pollen. Royal Botanical Gardens Kew: 139–159.Google Scholar
Pelzer, G., 1984. Cross section through fluvial environment in the Wealden of Northwest Germany. Third Symposium on Mesozoic Terrestrial Ecosystems, Tübingen, Short Papers: 181–186.Google Scholar
Pelzer, G. & Wilde, V., 1987. Klimatische Tendenzen während der Ablagerung der Wealden Fazies in Nordwesteuropa. Geologisches Jahrbuch Serie A, 96: 239–263.Google Scholar
Pelzer, G., Riegel, W. & Wilde, V., 1992. Depositional controls on the Lower Cretaceous Wealden coals of Northwest Germany. Special Papers of the Geological Society of America 267: 227–243.Google Scholar
Pons, D., 1979. Les organes reproducteurs de Frenelopsis alata (Feistmantel) Knobloch, Cheirolepidiaceae du Cénomanien de l’Anjou, France. Comptes rendus du 104e Congrès National des Sociétés Savantes, Bordeaux 1979, 1: 209–231.Google Scholar
Pons, D. & Broutin, J., 1978. Les organes reproducteurs de Frenelopsis oligostomata (Crétacé, Portugal). Comptes rendus du 103e Congrès National des Sociétés Savantes, Nancy 1978, II: 139–159.Google Scholar
Posamentier, H.W., Jervey, M.T. & Vail, P.R., 1988. Eustatic controls on clastic deposition I - Conceptual framework. In: Wilgus, C. K. & Hastings, B. S., (eds), Sea Level Changes; An Integrated Approach. Special Publication of the Society of Economists, Paleontologists and Mineralogists 42: 109–124.Google Scholar
Potonié, R., 1967. Versuch der Einordnung der fossilen Sporae dispersae in das phylogenetischen System der Pflanzenfamilien. Forschungsberichte des Landes Nordrhein-Westfalen, 1761: 11–310.Google Scholar
Potonié, R., 1970. Die fossilen Sporen. Ihre morphologische (phylogenetische) neben der morphographischen Ordnung. Forschungsberichte des Landes Nordrhein-Westfalen, 2108: 193.Google Scholar
Poumot, C., 1989. Palynological evidence for eustatic events in the tropical Neogene. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 13: 437–453.Google Scholar
Raine, J.I., de Jersey, N.J. & Ryan, K.G., 1988. Ultrastructure and Lycopsid affinity of Densoisporites psilatus (de Jersey) comb. nov. from the Triassic of New Zealand and Queensland. Memoirs of the Association Australasian Palaeontologists 5: 79–88.Google Scholar
Retallack, G.J., 1975. The life and times of a Triassic lycopod. Alcheringa 1:3–29.Google Scholar
Retallack, G.J., 1997. Earliest Triassic origin of Isoetes and quillwort adaptive. Journal of Palaeontology, 71: 35–45.Google Scholar
Reyre, Y., 1980. Peut-on estimer l’évolution des climats Jurassiques et Crétacés d’après la palynologie? Memoirs du Museum National d’Historie Naturelle, Nouveau Serie 27: 247–260.Google Scholar
Runhaar, J., Groen, C.L.G., Van der Meijden, R. & Stevers, R.A.M., 1987. Een nieuwe indeling in ecologische groepen binnen de Nederlandse flora. Gorteria 13: 277–305.Google Scholar
SIEP, 1995. Standard Ledgend. Shell International Exploration and Production B.V., The Hague.Google Scholar
Skog, J.E. & Hill, C.R., 1992. The Mesozoic herbaceous Lycopsids. Annals of the Missouri Botanical Gardens, 79: 648–675.Google Scholar
Srivastava, S.K., 1987. Jurassic spore-pollen assemblages from Normandy (France) and Germany. Geobios, 20, 1: 5–79.Google Scholar
Sue, J.-P., 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature, 307: 429–432.Google Scholar
Targarona, J., 1997. Climatic and Oceanographic evolution of the Mediterranean region over the last Glacial-Interglacial transition. A palynological approach. LPP Contribution Series, 7: 155 pp.Google Scholar
Törnqvist, T. E., 1993 Fluvial sedimentary geology and chronology of the chronology of the Holocene Rhine-Meuse delta, The Netherlands. Ph. D. Thesis, Utrecht: 169 pp.Google Scholar
Tralau, H., 1968. Some middle Jurassic miospores of southern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 89: 469–472.Google Scholar
Traverse, A., 1988. Palaeopalynology, Unwin Hyman, Boston: 600 pp.Google Scholar
Traverse, A., 1994. Sedimentation of palynomorphs and palynodebris: an introduction. In: Traverse, A., Sedimentation of Organic Particles. Cambridge University Press, Cambridge: 1–8.Google Scholar
Tyson, R.V., 1995. Sedimentary organic matter. Chapman and Hall, London: 615 pp.Google Scholar
Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N. & Perez-Cruz, C., 1991. The stratigraphic signatures of tectonics eustacy and sedimentology - an overview. In: Einsele, G., et al. (eds), Cycles and events in stratigraphy: 250–275.Google Scholar
Vakhrameev, V.A., 1970. Pattern of distribution and palaeoecology of Mesozoic conifers Cheirolepidiaceae. Palaeontologicheskij Zhurnal 1: 19–34 (in Russian).Google Scholar
Vakhrameev, V.A., 1991. Jurassic and Cretaceous floras and climates of the Earth. Cambridge University Press, Cambridge: 318 pp.Google Scholar
Van Amerom, H.W.J., Herngreen, G.F.W. & Romein, B.J., 1976. Palaeobotanical and palynological investigation with notes on the microfauna of some core samples from the Lower Cretaceous in the West Netherlands Basin. Mededelingen Rijks Geologische Dienst Nieuwe Serie 27: 41–79.Google Scholar
Van der Burgh, J. & Van Konijnenburg - Van Cittert, J.H.A., 1984. A drifted flora from the Kimmeridgian (Upper Jurassic) of Lothberg Point, Sutherland, Scotland. Review of Palaeobotany and Palynology 43: 351–396.Google Scholar
Van der Kaars, W.A., 1991. Palynology of eastern Indonesian marine piston-cores: A Late Quaternary vegetational and climatic record for Australasia. Palaeogeography, Palaeoclimatology, Palaeoecology 85: 239–302.Google Scholar
Van der Maarel, E., 1993. Ecosystems of the world 2A. Dry coastal ecosystems. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York: 600 pp.Google Scholar
Van der Zwan, C.J., 2002. The impact of Milankovitch-scale climatic forcing on sediment supply. Sedimentary Geology 147: 271–294.Google Scholar
Van der Zwan, C.J. & Brugman, W.A., 1999. Biosignals from the EA Field, Nigeria. In: Jones, R.W. & Simmons, M.D. (Eds), Biosignals in production and development geology. Geological Society Special Publication 152: 291–301.Google Scholar
Van Konijnenburg - Van Cittert, J.H.A., 1971. In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Botanica Neerlandica 20: 1–97.Google Scholar
Van Konijnenburg - Van Cittert, J.H.A., 1978. Osmundaceous spores in situ from the Jurassic of Yorkshire, England. Review of Palaeobotany and Palynology 26: 125–141.Google Scholar
Van Konijnenburg - Van Cittert, J.H.A., 1981. Schizaeaceous spores in situ from the Jurassic of Yorkshire, England. Review of Palaeobotany and Palynology 33: 169–181.Google Scholar
Van Konijnenburg - Van Cittert, J.H.A., 1987. New data on Pagiophyllum maculosum Kendall and its male cone from the Jurassic of North Yorkshire. Review of Palaeobotany and Palynology 51: 95–105.Google Scholar
Van Konijnenburg - Van Cittert, J.H.A., 1989. Dicksoniaceous spores in situ from the Jurassic of Yorkshire, England. Review of Palaeobotany and Palynology 61: 273–301.Google Scholar
Van Konijnenburg - Van Cittert, J.H.A., 1991. Diversification of spores in fossil and extant Schizaeaceae. In: Blackmore, S. and Barnes, S.H. (Eds), Pollen and Spores, patterns of diversification. Special Volume of the Systematics Association 44: 103–118.Google Scholar
Van Konijnenburg -Van Cittert, J.H.A., 1993. A review of the Matoniaceae based on in situ spores. Review of Palaeobotany and Palynology 78: 235–267.Google Scholar
Van Konijnenburg - Van Cittert, J.H.A. & Van der Burgh, J., 1989. The flora from the Kimmeridgian (Upper Jurassic) of Culgower, Sutherland, Scotland. Review of Palaeobotany and Palynology 61: 1–51.Google Scholar
Van Konijnenburg - Van Cittert, J.H.A., & Van der Burgh, J., 1996. Review of the Kimmeridgian flora of Sutherland, Scotland, with reference to the ecology and in situ pollen and spores. Proceedings of the Geologist’s Association 107: 97–105.Google Scholar
Venkatachala, B.S., Kar, R.H., & Raza, S., 1969. Palynology of the Mesozoic sediments of W. Kutch India - 3. Morphological study and revision of the spore genus Trilobosporites Pant ex Potonié. Palaeobotanist 17: 123–126.Google Scholar
Walter, H., 1973. Vegetation of the earth in relation to climate and the eco-physiological conditions. Springer-Verlag New York: 1–21.Google Scholar
Watson, J. 1988. The Cheirolepidiaceae. In: Beck, C.B. (Ed.), Origin and evolution of Gymnosperms. Columbia University Press: New York: 382–447.Google Scholar
Watson, J. & Sincock, C.A., 1992. Bennettitales of the English Wealden. The Palaeontographical Society, London: 228 pp.Google Scholar
Weiss, M., 1989. Die Sporenfloren aus Rät und Jura Südwest-Deutschlands und ihre Beziehung zur Ammoniten-Stratigraphic. Palaeontographica Abteilung B 215: 1–168.Google Scholar
Wesley, A., 1973. Jurassic plants. In: Hallam, A. (Ed.), Atlas of palaeobiogeography: 329–338.Google Scholar
Whitaker, M.F., Giles, M.R. & Cannon, J.C., 1992. Palynological review of the Brent Group, UK Sector, North Sea. In: Morton, A.C., Hazeldine, R. S., Giles, M. R. and Brown, S. (eds), Geology of the Brent Group, Geological Society Special Publicatio, 61: 169–202.Google Scholar
Yaroshenko, O.P., 1985. Cavate Lower Triassic spores and their relation to the lycopsids. Palaeontologicheskij Zhurnal 1985: 113–119 (in Russian).Google Scholar
Zagwijn, W.H. & Hager, H., 1987. Correlations of continental and marine Neogene deposits in the south-eastern Netherlands and the Lower Rhine District. Mededelingen Werkgroep Tertiair en Kwartair Geologie 24: 59–78.Google Scholar
Ziegler, P.A., 1990. Geological atlas of Western and Central Europe (2nd edition). Shell International Exploration and Production B.V., The Hague: 239 pp.Google Scholar