Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-15T16:52:41.877Z Has data issue: false hasContentIssue false

Cretaceous δ13C stratigraphy and the age of dolichosaurs and early mosasaurs

Published online by Cambridge University Press:  01 April 2016

L.L. Jacobs*
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
K. Ferguson
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
M.J. Polcyn
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
C. Rennison
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
*
* Corresponding author. Email: jacobs@smu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sediments in north-central Texas, ranging in age from >117 to 85 Ma, represent a variety of terrestrial and marine depositional settings. Isotopic analyses of wood fragments found throughout the section allow correlation to the standard secular marine δ13C curve because of characteristic peaks at the Aptian-Albian and Cenomanian-Turonian boundaries. Consistency of the north-central Texas δ13C curve with the marine standard facilitates correlation among non-marine and marine environments on a global scale. Radiometrically dated ammonite zones recognised in Texas provide calibration for the Cenomanian and Turonian portions of the section. Cenomanian and Turonian sediments in north-central Texas preserve the oldest (96 Ma) and the youngest (<85 Ma) well-documented Coniasaurus, a dolichosaur also known from the southern North Sea Basin during that interval. Haasiasaurus, the oldest known well-documented early mosasaur, is found at ‘Ein Yabrud, Israel (98 Ma), followed by other poorly dated Cenomanian taxa from the eastern Mediterranean region, and then by Dallasaurus turneri and Russellosaurus coheni in Texas (92 Ma) and Tethysaurus (90.5 Ma) in Morocco. Neither shifts in δ13C nor large-scale sea level change seem to have influenced dolichosaur or mosasaur evolution in substantial ways during the Cenomanian and Turonian stages.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2005

References

Arthur, M.A., Dean, W.E. & Schlanger, S.O., 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2In: Sundquist, E.T. & Broecker, W.S. (eds): The carbon cycle and atmospheric CO2: natural variations Archaean to present. American Geophysical Union, Geophysical Monograph 32: 504–529.Google Scholar
Averianov, A.O., 2001. The first find of a dolichosaur (Squamata, Dolichosauridae) in Central Asia. Paleontological Journal 35: 525–527.Google Scholar
Bardet, N., Pereda Suberbiola, X. & Jalil, N.-E., 2003. A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. Compte Rendus Palevol 2: 607–616.Google Scholar
Bell, B.A., Murry, P.A. & Osten, L.W., 1982. Coniasaurus Owen, 1850 from North America. Journal of Paleontology 56: 520–524.Google Scholar
Bell, G.L. Jr. & Polcyn, M.J., 2005. Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). In: Schulp, A.S. & Jagt, J.W.M. (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 177–194.Google Scholar
Bell, G.L. Jr. & VonLoh, J.P., 1998. New records of Turonian mosasauroids from the western United States. In: Martin, J.E., Hogenson, J.W. & Benton, R.C. (eds): Partners preserving our past, planning our future. Dakoterra 5: 15–28.Google Scholar
Buchy, M.-C., Smith, K.T., Frey, E., Stinnesbeck, W., González González, A.H., Ifrim, C.López-Oliva, J.G. & Porras-Muzquis, H., 2005. Annotated catalogue of marine squamates (Reptilia) from the Upper Cretaceous of northeastern Mexico. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 195–205.Google Scholar
Caldwell, M.W., 1999. Description and phylogenetic relationships of a new species of Coniasaurus Owen, 1850 (Squamata). Journal of Vertebrate Paleontology 19: 438–455.Google Scholar
Caldwell, M.W. & Cooper, J.A., 1999. Redescription, palaeobiogeography and palaeoecology of Coniasaurus crassidens Owen, 1850 (Squamata) from the Lower Chalk (Cretaceous; Cenomanian) of SE England. Zoological Journal of the Linnean Society 127: 423–452.Google Scholar
Caldwell, M.W. & Dal Sasso, C., 2004. Soft-tissue preservation in a 95 million year old marine lizard: Form, function, and aquatic adaptation. Journal of Vertebrate Paleontology 24: 980–985.Google Scholar
Carroll, R.L. & DeBraga, M., 1992. Aigialosaurs: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology 12: 66–86.Google Scholar
Cavin, L. & Dutheil, D.B., 1999. A new Cenomanian ichthyofauna from southeastern Morocco and its relationships with other early Late Cretaceous Moroccan faunas. Geologie en Mijnbouw 78: 261–266.Google Scholar
Collins, J.G., 1997. Characteristics and origin of the Cedar Hill bentonite bed, lower Austin Chalk, Dallas County Vicinity. The University of Texas at Arlington, Texas: 102 pp. (unpubl. MSc thesis).Google Scholar
Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12: 133–149.Google Scholar
Dal Sasso, C. & Renesto, S., 1999. Aquatic varanoid reptiles from the Cenomanian (Upper Cretaceous) lithographic limestones of Lebanon. Rivista del Museo civico di Scienze naturali ‘E. Caffi’, Bergamo 20: 63–69.Google Scholar
Dalla Vecchia, F.M. & Venturini, S., 1999. The Middle Cenomanian Lagerstätte of al Nammoura (Kesrouâne Caza, N Lebanon). Rivista del Museo civico di Scienze naturali ‘Enrico Caffi’, Bergamo 20: 75–77.Google Scholar
Diedrich, C., 1997. Ein Dentale von Coniasaurus crassidens Owen (Varanoidea) aus dem Ober-Cenoman von Halle/Westf. (NW-Deutschland). Geologie und Paläontologie in Westfalen 47: 43–51.Google Scholar
Diedrich, C., 1999. Erster Nachweis von Dolichosaurus longicollis Owen (Varanoidea) aus dem Ober-Cenoman von Halle/Westf. (NW-Deutschland). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1999/6: 372–384.Google Scholar
Ettachfini, E.M. & Andreu, B., 2004. Le Cénomanien et le Turonien de la plateforme Préafricaine du Maroc. Cretaceous Research 25: 277–302.Google Scholar
Ferguson, K.M., Gregory, R.T. & Constantine, A., 1999. Lower Cretaceous (Aptian-Albian) secular changes in the oxygen and carbon isotope record from high paleolatitude, fluvial sediments, southeast Australia: comparisons to the marine record. In: Barrera, E. & Johnson, C.C. (eds): Evolution of the Cretaceous ocean-climate system. Geological Society of America, Special Paper 332: 59–72.Google Scholar
Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., Van Veen, P., Thierry, J. & Huang, Z., 1995. A Triassic, Jurassic, and Cretaceous time scale. Society of Economic Paleontologists and Mineralogists, Special Publication 54: 95–126.Google Scholar
Gradstein, F.M. & Ogg, J.G., 2004. Geologic time scale 2004 - why, how, and where next! Lethaia 37: 175–181.Google Scholar
Gröcke, D.R., Hesselbo, S.P. & Jenkyns, H.C., 1999. Carbon-isotope composition of Lower Cretaceous fossil wood: ocean-atmosphere chemistry and relation to sea-level change. Geology 27: 155–158.Google Scholar
Haq, B.U., Hardenbol, J. & Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., van Wagoner, J., Ross, C.A. & Kendall, C.G. St. C. (eds): Sea-level changes: an integrated approach. Society of Economic Paleontologists and Mineralogists, Special Publication 42: 71–108.Google Scholar
Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, Th., Graciansky, P.-C. de & Vail, P.R., 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Graciansky, P.-C. de, Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic sequence stratigraphy of European basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 3–13, 763–782.Google Scholar
Hardenbol, J. & Robaszynski, F., 1998. Introduction to the Upper Cretaceous. In: Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic sequence stratigraphy of European basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 329–332.Google Scholar
Hasegawa, T., Pratt, L.M., Maeda, H., Shigeta, Y., Okamoto, T., Kase, T. & Uemura, K., 2003. Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2. Palaeogeography, Palaeoclimatology, Palaeoecology 189: 97–115.Google Scholar
Hückel, U., 1970. Die Fischschiefer von Haqel und Hjoula in der Oberkreide des Libanon. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 135: 113–149.Google Scholar
Jacobs, L.L., Polcyn, M.J., Taylor, L.H. & Ferguson, K., 2005. Sea-surface temperatures and palaeoenvironments of dolichosaurs and early mosasaurs. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 269–281.Google Scholar
Jacobs, L.L. & Winkler, D.A., 1998. Mammals, archosaurs, and the Early to Late Cretaceous transition in north-central Texas. In: Tomida, Y., Flynn, L.J. & Jacobs, L.L. (eds): Advances in vertebrate paleontology and geochronology. National Science Museum Tokyo, Monographs 14: 253–280.Google Scholar
Jacquin, T. & De Graciansky, P.-C., 1998. Major transgressive/regressive cycles: the stratigraphic signature of European Basin development. In: Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 15–29.Google Scholar
Jenkyns, H.C., Gale, A.S. & Corfield, R.M., 1994. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine 131: 1–34.Google Scholar
Keller, G., Berner, Z., Adatte, T. & Stueben, D., 2004. Cenomanian-Turonian and δ13C, and δ180, sea level and salinity variations at Pueblo, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 211: 19–43.Google Scholar
Kennedy, W.J., 1988. Late Cenomanian and Turonian ammonite faunas from north-east and central Texas. Special Papers in Palaeontology 39: 1–131.Google Scholar
Kennedy, W.J. & Cobban, W.A., 1990. Cenomanian ammonite faunas from the Woodbine Formation and lower part of the Eagle Ford Group, Texas. Palaeontology 33: 75–154.Google Scholar
Lewy, Z., 1989. Correlation of lithostratigraphic units in the upper Judea Group (Late Cenomanian-Late Coniacian) in Israel. Israel Journal of Earth Science 38: 37–43.Google Scholar
Lewy, Z., 1990. Transgressions, regressions and relative sea level changes on the Cretaceous shelf of Israel and adjacent countries. A critical evaluation of Cretaceous global sea level correlations. Paleoceanography 5: 619–637.Google Scholar
Lewy, Z. & Avni, Y., 1988. Omission surfaces in the Judea Group, Makhtesh Ramon region, southern Israel, and their paleogeographic significance. Israel Journal of Earth Science 37: 105–113.Google Scholar
Lewy, Z. & Raab, M., 1978. Mid-Cretaceous stratigraphy of the Middle East. Annales du Muséum d’Histoire naturelle de Nice 4(1976): 1–21.Google Scholar
Obradovich, J.D., 1994. A Cretaceous time scale. In: Caldwell, W.G.E. & Kauffmann, E.G. (eds): Evolution of the Western Interior Basin. Geological Society of Canada, Special Paper 39: 379–396.Google Scholar
Polcyn, M.J. & Bell, G.L., 2005. Russellosaurus coheni n. gen., n. sp., a 92 million-year-old mosasaur from Texas (USA), and the definition of the parafamily Russellosaurina. In: Schulp, A.S. & Jagt, J.W.M., (eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences 84: 321–333.Google Scholar
Polcyn, M.J., Tchernov, E. & Jacobs, L.L., 1999. The Cretaceous biogeography of the eastern Mediterranean with a description of a new basal mosasauroid from ‘Ein Yabrud, Israel. In: Tomida, Y., Rich, T.H. & Vickers-Rich, P. (eds): Proceedings of the Second Gondwanan Dinosaur Symposium. National Science Museum Tokyo, Monographs 15: 259–290.Google Scholar
Polcyn, M.J., Tchernov, E. & Jacobs, L.L., 2003. Haasiasaurus gen. nov., a new generic name for the basal mosasauroid Haasia Polcyn et al., 1999. Journal of Vertebrate Paleontology 23: 476.Google Scholar
Rage, J.-C., 1989. Le plus ancien lézard varanoïde de France. Bulletin de la Société d’Étude et des Sciences d’Anjou 13: 19–26.Google Scholar
Reid, W.T., 1952. Clastic limestone in the upper Eagle Ford Shale, Dallas County, Texas. Field and Laboratory 20: 111–122.Google Scholar
Rennison, C.J., 1996. The stable carbon isotope record derived from mid-Cretaceous terrestrial plant fossils from north-central Texas. Southern Methodist University, Dallas, Texas: 120 pp. (unpubl. MSc thesis).Google Scholar
Robaszynski, F., Gale, A., Juignet, P., Amėdro, F. & Hardenbol, J., 1998. Sequence stratigraphy in the Upper Cretaceous Series of the Anglo-Paris Basin: Exemplified by the Cenomanian stage. In: Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 363–386.Google Scholar
Robinson, S.A. & Hesselbo, S.P., 2004. Fossil-wood carbon-isotope stratigraphy of the non-marine Wealden Group (Lower Cretaceous, southern England). Journal of the Geological Society, London 161: 133–145.Google Scholar
Saint-Marc, P., 1975. Étude stratigraphique et micropaléontologique de l’Albien, du Cénomanien et du Turonien du Liban. Notes et Mémoires sur le Moyen-Orient 8: 8–342.Google Scholar
VonLoh, J.P. & Bell, G.L. Jr., 1998. Fossil reptiles from the Late Cretaceous Greenhorn Formation (Late Cenomanian-Middle Turonian) of the Black Hills region, South Dakota. In: Martin, J.E., Hogenson, J.W. & Benton, R.C. (eds): Partners preserving our past, planning our future. Dakoterra 5: 29–38.Google Scholar