Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T14:20:45.065Z Has data issue: false hasContentIssue false

Laboratory constraints on ice formation, restructuring and desorption

Published online by Cambridge University Press:  27 October 2016

Karin I. Öberg*
Affiliation:
Harvard-Smithsonian Center for Astrophysics60 Garden St, Cambridge, MA 02138 email: koberg@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ices form on the surfaces of interstellar and circumstellar dust grains though freeze-out of molecules and atoms from the gas-phase followed by chemical reactions. The composition, chemistry, structure and desorption properties of these ices regulate two important aspects of planet formation: the locations of major condensation fronts in protoplanetary disks (i.e. snow lines) and the formation efficiencies of complex organic molecules in astrophysical environments. The latter regulates the availability of prebiotic material on nascent planets. With ALMA it is possible to directly observe both (CO) snowlines and complex organics in protoplanetary disks. The interpretation of these observations requires a detailed understanding of the fundamental ice processes that regulate the build-up, evolution and desorption of icy grain mantles. This proceeding reviews how experiments on thermal CO and N2 ice desorption, UV photodesorption of CO ice, and CO diffusion in H2O ice have been used to guide and interpret astrochemical observations of snowlines and complex molecules.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bacmann, A., Taquet, V., Faure, A., et al. 2012, A&A, 541, 12 Google Scholar
Bisschop, S. E. and Fraser, H. J., Öberg, K. I. et al. 2006, A&A, 449, 1297 Google Scholar
Cernicharo, J., Marcelino, N., & Roueff, E., 2012, A&A, 759, L43 Google Scholar
Collings, M. P., Dever, J. W., & Fraser, H. J. 2003, ApJ, 583, 1058 CrossRefGoogle Scholar
Fayolle, E. C., Bertin, M., & Romanzin, C. 2011, ApJL, 739, L36 CrossRefGoogle Scholar
Garrod, R. T., Weaver, S. L. W., & Herbst, E. 2008, ApJ, 682, 283 CrossRefGoogle Scholar
Herbst, E., & van Dishoeck, E. F. 2009, ARA&A, 47, 427 Google Scholar
Karssemeijer, L. J., Ioppolo, S., & van Hemert, M. C., 2014, A&A, 781, 16 Google Scholar
Lauck, T., Karssemeijer, L., Shulenberger, K. et al. 2015, ApJ, 801, 118 CrossRefGoogle Scholar
Munoz Caro, G. M., Jimenez-Escobar, A., & Martin-Gago, J. A., 2010, A&A, 522, 108 Google Scholar
Öberg, K. I., van Broekhuizen, F., Fraser, H. J. et al. 2005 ApJL, 621, L33 CrossRefGoogle Scholar
Öberg, K. I., van Dishoeck, E. F., & Linnartz, H. 2009 A&A, 496, 281 Google Scholar
Öberg, K. I., Boogert, A. C. A., Pontoppidan, K. M. et al. 2011 ApJ, 740, 109 CrossRefGoogle Scholar
Öberg, K. I., Murray-Clay, R., & Bergin, E. A. 2011 ApJL, 743, L16 CrossRefGoogle Scholar
Öberg, K. I., Furuya, K., & Loomis, R. 2015 ApJ, 810, 112 CrossRefGoogle Scholar
Qi, C., Öberg, K. I., Wilner, D. J. et al. 2013, Science, 341, 630 CrossRefGoogle Scholar