Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T16:15:33.507Z Has data issue: false hasContentIssue false

Ion Irradiation Effects of Yttria-stabilized Zirconia Conductivity

Published online by Cambridge University Press:  01 February 2011

Jeremy Cheng
Affiliation:
acopland@stanford.edu, Stanford University, Materials Science and Engineering, 530-226, 440 Escondido Mall, Stanford, CA, 94305, United States
Kevin Crabb
Affiliation:
kcrabb@stanford.edu, Stanford University, Materials Science and Engineering
Rojana Pornprasertsuk
Affiliation:
rojana@stanford.edu, Stanford University, Materials Science and Engineering, United States
Hong Huang
Affiliation:
hongkh@stanford.edu, Stanford University, Mechanical Engineering, United States
Yuji Saito
Affiliation:
acopland01@yahoo.com, Stanford University, Mechanical Engineering
Fritz B Prinz
Affiliation:
fbp@cdr.stanford.edu, Stanford University, Mechanical Engineering, United States
Get access

Abstract

The performance of solid oxide fuel cells is limited largely by ion transport in the electrolyte. Thin film electrolytes of yttria-stabilized zirconia were deposited by pulsed laser deposition. The electrolyte material was subjected to heavy ion irradiation and heat treatment and the effects on conductivity were measured using electrical impedance spectroscopy. Following irradiation there is a drop in conductivity by a factor of 3-4. After heat treatment at 800°C, the conductivity recovers to the as-deposited value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sakaguchi, I., Yurimoto, H., Sueno, S., Solid State Comm. 84 (9) (1992) 889–93.Google Scholar
2. Atkinson, A., Taylor, R. I., Phil. Mag. A 39 (5) (1979) 581–95.Google Scholar
3. Hirth, J. P., Lothe, J., Theory of Dislocations, 1982.Google Scholar
4. Pornprasertsuk, R., Cheng, J., Saito, Y., Gür, T. M., Prinz, F., 2004, electrochem. Soc. Proc. (in press). Fifth International Symposium on Ionic and Mixed Conducting Ceramics, 3–8 Oct. 2004, Honolulu, HI.Google Scholar
5. Cheng, J., Prinz, F. B., Nucl. Inst. and Meth. B 227 (4) (2005) 577583.Google Scholar
6. Sickafus, K. E., Matzke, H., Hartmann, T., Yasuda, K., Valdez, J. A., Chodak, P., Nastasi, M., Verrall, R. A., J. Nucl. Mat. 274 (1/2) (1999) 6677.Google Scholar
7. Degueldre, C., Paratte, J. M., Nucl. Tech. 123 (1) (1998) 21–9.Google Scholar
8. Sasajima, N., Matsui, T., Hojou, K., Furuno, S., Otsu, H., Izui, K., Muromura, T., Nucl. Inst. Meth. B 141 (1/4) (1998) 487–93.Google Scholar
9. Zhu, S., Zu, X. T., Xiang, X., Wang, Z. G., Wang, L. M., Ewing, R. C., Nucl. Inst. Meth. B 206 (2003) 10921096.Google Scholar
10. Yasuda, K., Nastasi, M., Sickafus, K. E., Maggiore, C. J., Yu, N., Nucl. Inst. Meth. B 138 (1998) 499504.Google Scholar
11. Fleischer, E. L., Norton, M. G., Zaleski, M. A., Hertl, W., Carter, C. B., Mayer, J. W., J. Mat. Res. 6 (9) (1991) 1905–12.Google Scholar
12. Cheng, J., Huang, H., Gür, T., Barnett, D. M., Prinz, F. B.. Manuscript to be submitted.Google Scholar
13. Ioffe, A. I., Rutman, D. S., Karpachov, S. V., Electrochim. Acta 23 (1975) 141–2. 5Google Scholar
14. Dixon, J. M., Lagrange, L. D., Merten, U., Miller, C. F., Porter, J. T., J. Electrochem. Soc. 110 (4) (1963) 276280.Google Scholar
15. Guo, X., Maier, J., J. Electrochem. Soc. 148 (3) (2001) E1216.Google Scholar
16. Maier, J., Ber. Bunsenges. 90 (1) (1986) 2633.Google Scholar
17. Aoki, M., Chiang, Y. M., Kosacki, I., Lee, I. J. R., Tuller, H., Liu, Y. P., J ACerS 79 (5) (1996) 1169–80.Google Scholar
18. Verkerk, M. J., Middelhuis, B. J., Burggraaf, A. J., Solid State Ion. 6 (2) (1982) 159–70.Google Scholar
19. Kleitz, M., Dessemond, L., Steil, M. C., Solid State Ion. 75 (1995) 107–15.Google Scholar