Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T08:53:38.060Z Has data issue: false hasContentIssue false

Common Cocklebur Competition in Forage Maize

Published online by Cambridge University Press:  20 January 2017

Zahid Hussain*
Affiliation:
Department of Weed Science, and Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan
Khan Bahadar Marwat
Affiliation:
Department of Weed Science, and Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan
John Cardina
Affiliation:
Department of Horticulture and Crop Science, Ohio State University, 1680 Madison Avenue, Wooster, OH 44691
*
Corresponding author's E-mail: zhussainpk135@yahoo.com

Abstract

Common cocklebur is a new weed in irrigated maize grown for forage in the hot, dry region of northwest Pakistan. We conducted experiments in the Khyber Pakhtunkhwa Province, Peshawar, Pakistan, during 2006 and 2007 to evaluate the interaction of common cocklebur density and maize density on biomass, leaf area index (LAI), and plant height of forage maize. Seven common cocklebur densities (0, 2, 4, 6, 8, 10, and 12 plants m−2) in maize planted at four densities (5, 7.5, 10, and 12.5 plants m−2) were evaluated. An ANOVA for both years revealed significant main effects and interactions for all variables. Regression of measured variables against common cocklebur density showed that maize biomass declined linearly as common cocklebur density increased from 0 to 12 plants m−2, with an increasing rate of decline for high maize densities and low maize densities. Combined data for all maize densities revealed that the relationship between maize biomass and common cocklebur biomass fit a linear function, with 1.28 to 1.35 kg ha−1 loss in maize biomass for each kilogram per hectare increase in common cocklebur biomass from about 1,500 to 3,200 kg ha−1. Above 8 to 10 common cocklebur plants m−2, weed biomass declined, presumably due to intraspecific competition. An increase in common cocklebur density decreased maize LAI about 0.15 to 0.3 units for each additional common cocklebur plant per square meter in 2006, and 0.11 to 0.24 units in 2007. Common cocklebur LAI increased in a linear fashion as density of the weed increased. Results suggest that the effect of common cocklebur interference on maize biomass was associated with a change in allocation of resources, resulting in increased crop height growth at the expense of a reduction in LAI and presumably potential light interception by the crop as common cocklebur density increased.

Xanthium strumarium es una nueva maleza en el maíz de riego cultivado para forraje en la región calurosa y seca del noroeste de Pakistán. Llevamos al cabo experimentos en la Provincia de Khyber Pakhtunkhwa, Peshawar, Pakistán, durante 2006 y 2007 para evaluar la interacción de la densidad de Xanthium strumarium y de maíz con la biomasa, el índice del área foliar y la altura de la planta del maíz forrajero. Se evaluaron siete densidades de Xanthium strumarium (0, 2, 4, 6, 8, 10 y 12 plantas m−2), en maíz sembrado a cuatro densidades (5, 7.5, 10 y 12.5 plantas m−2). Un ANDEVA para ambos años reveló efectos importantes e interacciones significativas para todas las variables. La regresión de las variables medidas de la densidad de Xanthium strumarium contra la biomasa del maíz mostró que disminuyó linealmente conforme la densidad de la maleza incrementó de 0 a 12 plantas m−2, con una tasa creciente de disminución para altas y bajas densidades de maíz. Los datos combinados para todas las densidades de maíz, revelaron que la relación entre la biomasa del maíz y la biomasa de Xanthium strumarium se ajusta a una función lineal, con una pérdida de 1.28 a 1.35 kg ha−1 en la biomasa de maíz, por cada kg ha−1 en que se incrementó la biomasa de Xanthium strumarium, de aproximadamente 1500 a 3200 kg ha−1. Cuando había más de 8 a 10 plantas de Xanthium por m−2, la biomasa de la maleza disminuyó, presumiblemente debido a la competencia intra-específica. Un incremento en la densidad de Xanthium strumarium, disminuyó el índice del área foliar del maíz en aproximadamente 0.15 a 0.3 unidades por cada planta adicional de Xanthium strumarium por m−2 en 2006, y de 0.11 a 0.24 unidades en 2007. El índice del área foliar de Xanthium strumarium incrementó de manera lineal conforme aumentó la densidad de la maleza. Los resultados sugieren que el efecto de la interferencia de Xanthium strumarium en la biomasa del maíz, estaba asociado con un cambio en la asignación de los recursos del cultivo, originando con esto un incremento en la altura del cultivo a expensas de una reducción del índice del área foliar y presumiblemente ocurrió una intercepción potencial de la luz del cultivo conforme se incrementó la densidad de la maleza.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akbar, H., Paigham, S., Khan, A. Z., Hamad, S., and Munir, M. 1996. Biomass, grain yield and harvest index, a criteria for comparing corn types at different nitrogen levels and planting densities. Sarhad J. Agric 12:261267.Google Scholar
Baig, A. R., Baig, M. S., Ali, Q., and Khan, C. M. A. 1985. Agro-Ecological Zonation of Pothwar. A. Wheat. B. Maize. Islamabad Pakistan Agricultural Research Council. 68 p.Google Scholar
Baldoni, G., Viggiani, P., Bonetti, A., Dinelli, G., and Catezone, P. 2000. Classification of Italian X. strumarium complex based on biological traits, electrophoretic analysis and response to maize interference. Weed Res. 40:191204.Google Scholar
Beckett, T. H., Stoller, E. W., and Wax, L. M. 1988. Interference of four annual weeds in corn. Weed Sci. 36:764769.Google Scholar
Bhatt, B. P., Chauhan, D. S., and Todaria, N. P. 1994. Effect of weed leachates on germination and radicle extension of some food crops. Indian J. Plant Physiol 37:177179.Google Scholar
Bhatti, A. U. 2002. Soil fertility status of Malakandher Farm. Soil Bulletin 6. Peshawar, Pakistan Department of Soil and Environmental Science, NWFP Agricultural University. 13 p.Google Scholar
Bloomberg, J. R., Kirkpatrick, B. L., and Wax, L. M. 1982. Competition of common cocklebur with soybean. Weed Sci. 30:507513.Google Scholar
Bussler, B. H., Maxwell, B. D., and Puettmann, K. J. 1995. Using plant volume to quantify interference in corn (Zea mays) neighborhoods. Weed Sci. 43:586594.Google Scholar
Byrd, J. D. and Coble, H. D. 1991. Interference of common cocklebur (X. strumarium) and cotton (Gossypium hirsutum). Weed Technol. 5:270278.Google Scholar
Chahal, S. J., Kler, D. S., and Singh, S. 1994. Relationship between LAI and the distribution pattern of photosynthetically active radiation in the profile of wheat canopy. Crop Res. Hisar 7:343346.Google Scholar
Cole, R. J., Stuart, B. P., Lansden, J. A., and Cox, R. H. 1980. Isolation and redefinition of the toxic agent from cocklebur (X. strumarium). J. Agric. Food Chem. 28:13321333.Google Scholar
David, I. and Kovacs, I. 2007. Competition of three noxious weeds with row crops. Cereal Res. Commun 35:341344.Google Scholar
Hashemi, A. M., Herbert, S. J., and Putnam, D. H. 2005. Yield response of corn to crowding stress. Agron. J. 97:839846.Google Scholar
Hashim, S. and Marwat, K. B. 2002. Invasive weeds a threat to biodiversity: a case study from Abbotabad district, N-W Pakistan. Pak. J. Weed Sci. Res 8:112.Google Scholar
Inam, B., Hussain, F., and Bano, F. 1987. Allelopathic effects of Pakistani weed, Xanthium strumarium L. Pak. J. Sci. Indust. Res 30:530533.Google Scholar
Jolliffe, P. A. 1997. Are mixed populations of plants species more productive than pure stands? Oikos 80:595602.Google Scholar
Martin, T., Stair, E. L., and Dawson, L. 1986. Cocklebur poisoning in cattle. J. Am. Vet. Med. Assoc 189:562563.Google Scholar
Marwat, K. B. and Nafziger, E. D. 1990. Cocklebur and velvetleaf interference with soybean grown at different densities and planting patterns. Agron. J. 82:531534.Google Scholar
McCoy, P. 1986. Toxic plants of Mississippi—cocklebur. Mississippi Vet. J. 36:1011.Google Scholar
Muhammad, D. 2007. Country pasture/forage resource profiles of Pakistan. http://www.fao.org/ag/AGP/AGPC/doc/Counprof/pakistan.htm. Accessed: February 2, 2009.Google Scholar
Pearcy, R. W. and Ehleringer, J. 1984. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ 7:113.Google Scholar
Rao, V. S. 2000. Harmful effects caused by weeds. Page. 1. in. Principles of Weed Science. New Delhi and Calcutta Oxford and IBH Publishing.Google Scholar
Royal, S. S., Brecke, B. J., and Colvin, D. L. 1997. Common cocklebur (X. strumarium) interference with peanut (Arachis hypogaea). Weed Sci. 45:3843.Google Scholar
Saayman, A. E. J., Van-de-Venter, H. A., Brown, H., and Cussans, G. W. 1996. Influence of weed competition on germination and seed vigor of Zea mays caryopses. Pages. 101106. in Proceedings of the 2nd International Weed Control Congress. SP. Slagelse (Denmark).Google Scholar
Shah, G. M. and Khan, M. A. 2006. Checklist of noxious weeds of District Mansehra, Pakistan. Pak. J. Weed Sci. Res 12:213219.Google Scholar
Snipes, C. E., Buchanan, G. A., Street, J. E., and McGuire, J. A. 1982. Competition of common cocklebur with cotton. Weed Sci. 30:553556.Google Scholar
Tollenaar, M., Dibo, A. A., Aguilara, A., Weise, S. F., and Swanton, C. J. 1994. Effect of crop density on weed interference in maize. Agron. J. 86:591595.Google Scholar
Young, F. L., Wyse, D. L., and Jones, R. J. 1984. Quackgrass (Agropyron repens) interference on corn (Zea mays). Weed Sci. 32:226234.Google Scholar