Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T10:49:46.677Z Has data issue: false hasContentIssue false

Structure and magnetic properties of hydrides based on Uranium bcc alloys

Published online by Cambridge University Press:  09 May 2014

Ladislav Havela
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic.
Mykhaylo Paukov
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic.
Ilya Tkach
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic.
Zdenek Matej
Affiliation:
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic.
N.-T.H. Kim-Ngan
Affiliation:
Institute of Physics, Pedagogical University, Podchorazych 2, 30-084 Krakow, Poland.
Alexander V. Andreev
Affiliation:
Institute of Physics, Academy of Sciences, Na Slovance 2, 18221 Prague, Czech Republic.
Get access

Abstract

γ-U alloys with Mo or Zr are more resistant to hydrogen than U metal. High pressures of H are needed to produce hydrides. Amorphous structure of UH3Mox can be represented as the cubic structure of β-UH3 type with grain size around 1 nm. UH3Zrx are formed in the cubic α-UH3 type of structure. All the hydrides are ferromagnets, with magnetic parameters (magnetic moments, Curie temperature) exceeding those of β-UH3 (0.9 μB/U, 165-170 K). It is deduced that α-UH3 has magnetic properties very similar to β-UH3, despite rather different U-U spacing.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Troc, R. and Suski, W., J. Alloys Comp. 219, 1 (1995).CrossRefGoogle Scholar
Taylor, C. D., Lookman, T., and Scott Lillard, R., Acta Materialia 58, 1045 (2010).CrossRefGoogle Scholar
Lawson, A. C., Goldstone, J. A., Huber, J. G., Giorgi, A. L., Conant, J. W., Severing, A., Cort, B., and Robinson, R.A., J. Appl. Phys. 69, 5112 (1991).CrossRefGoogle Scholar
Drulis, H., Vagizov, F. G., Drulis, M., and Mydlarz, T.., Phys. Rev. B, 52, 9500 (1995).CrossRefGoogle Scholar
Andreev, A. V., Bartashevich, M. I., Deryagin, A. V., Havela, L., and Sechovský, V., Phys. Stat. Sol. (a) 98, K47 (1986).CrossRefGoogle Scholar
Tkach, I., Mašková, S., Matěj, Z., Kim-Ngan, N.-T. H., Andreev, A.V., and Havela, L., Phys. Rev. B 88, 060407(R) (2013).CrossRefGoogle Scholar
Tkach, I., Kim-Ngan, N. T. H., Warren, A., Scott, T., Gonçalves, A.P., and Havela, L., Physica C 498, 14 (2014).CrossRefGoogle Scholar
Andreev, A. V., Zadvorkin, S. M., Bartashevich, M. I., Goto, T., Kamarad, J., Arnold, Z., and Drulis, H., J. Alloys Comp. 267, 32 (1998).CrossRefGoogle Scholar
Fernandes, J. C., Continentino, M. A., and Guimaraes, A. P., Solid State Commun. 55, 1011 (1985).CrossRefGoogle Scholar
Homma, Y., Takakuwa, Y., Shiokawa, Y., and Suzuki, K., J. Alloys Comp. 271273, 459 (1998).CrossRefGoogle Scholar
Rafaja, D., Havela, L., Kužel, R., Wastin, F., Colineau, E., and Gouder, T., J. Alloys Comp. 386, 87 (2005).CrossRefGoogle Scholar
Havela, L., Miliyanchuk, K., Rafaja, D., Gouder, T., and Wastin, F., J. Alloys Comp. 408412, 1320 (2006).CrossRefGoogle Scholar