Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T01:58:07.572Z Has data issue: false hasContentIssue false

Characterization of Minority-Carrier Hole Transport in Nitride-Based Light-Emitting Diodes with Optical and Electrical Time-Resolved Techniques

Published online by Cambridge University Press:  01 February 2011

R. J. Kaplar
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
S. R. Kurtz
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. D. Koleske
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
A. A. Allerman
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
A. J. Fischer
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. H. Crawford
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Forward-to-reverse bias step-recovery measurements were performed on In.07Ga.93N/GaN and Al.36Ga.64N/Al.46Ga.54N quantum-well (QW) light-emitting diodes grown on sapphire. With the QW sampling the minority-carrier hole density at a single position, distinctive two-phase optical decay curves were observed. Using diffusion equation solutions to self-consistently model both the electrical and optical responses, hole transport parameters τp = 758 ± 44 ns, Lp = 588 ± 45 nm, and μp = 0.18 ± 0.02 cm2/Vs were obtained for GaN. The mobility was thermally activated with an activation energy of 52 meV, suggesting trap-modulated transport. Optical measurements of sub-bandgap peaks exhibited slow responses approaching the bulk lifetime. For Al.46Ga.54N, a longer lifetime of τp = 3.0 μs was observed, and the diffusion length was shorter, Lp ≈ 280 nm. Mobility was an order of magnitude smaller than in GaN, μp ≈ 10−2 cm2/Vs, and was insensitive to temperature, suggesting hole transport through a network of defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. van Hove, J. M., Hickman, R., Klaassen, J. J., Chow, P. P., and Ruden, P. P., Appl. Phys. Lett. 70, 2282 (1997).Google Scholar
2. Carrano, J. C., Li, T., Brown, D. L., Grudowski, P. A., Eiting, C. J., Dupuis, R. D., and Campbell, J. C., Appl. Phys. Lett. 73, 2405 (1998).Google Scholar
3. Chichibu, S. F., Azuhata, T., Sota, T., Mukai, T., and Nakamura, S., J. Appl. Phys. 88, 5153 (2000).Google Scholar
4. Shan, W., Xie, X. C., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 67, 2512 (1995).Google Scholar
5. Chernyak, L., Osinsky, A., Temkin, H., Yang, J. W., Chen, Q., and Khan, M. A., Appl. Phys. Lett. 69, 2531 (1996)Google Scholar
6. Bandic, Z. Z., Bridger, P. M., Piquette, E. C., and McGill, T. C., Solid State Electron. 44, 221 (2000).Google Scholar
7. Dean, R. H. and Nuese, C. J., IEEE Trans. Electron Devices ED-18, 151 (1971).Google Scholar
8. Kingston, R. H., Proc. IRE 42, 829 (1954).Google Scholar
9. Kaplar, R. J., Kurtz, S. R., Koleske, D. D., and Fischer, A. J., J. Appl. Phys. 95, 4905 (2004).Google Scholar
10. Kaplar, R. J., Kurtz, S. R., and Koleske, D. D., Appl. Phys. Lett. 85, 5436 (2004).Google Scholar
11. Fischer, A. J., Allerman, A. A., Crawford, M. H., Bogart, K. H. A., Lee, S. R., Kaplar, R. J., Chow, W. W., Kurtz, S. R., Fullmer, K. W., and Figiel, J. J., Appl. Phys. Lett. 84, 3394 (2004).Google Scholar