Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T13:03:14.830Z Has data issue: false hasContentIssue false

Cambro-Ordovician vs Devono-Carboniferous geodynamic evolution of the Bohemian Massif: evidence from P–T–t studies in the Orlica–Śnieżnik Dome, SW Poland

Published online by Cambridge University Press:  16 November 2017

MIROSŁAW JASTRZĘBSKI*
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Wrocław INGPAN, ul. Podwale 75, 50-449 Wrocław, Poland
BARTOSZ BUDZYŃ
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków INGPAN, ul. Senacka 1, 31-002 Kraków, Poland
WOJCIECH STAWIKOWSKI
Affiliation:
Institute of Geology, Adam Mickiewicz University, ul. Krygowskiego 12, 61-680 Poznań, Poland
*
Author for correspondence: mjast@interia.pl

Abstract

The pressure–temperature–deformation–time (P–T–d–t) record of metagranitic rocks and adjacent diverse rocks of the metavolcano-sedimentary group from the Orlica–Śnieżnik Dome (OSD) in SW Poland is examined. The study aims to better understand the course of the break-up of northern Gondwana and the overprinting Variscan tectonometamorphism in the NE Bohemian Massif. We test the existing hypotheses that explain the Cambro-Ordovician thermal event recorded in the meta-supracrustal group by (i) syn-deformational regional metamorphism or (ii) the contact metamorphism of the (meta)sedimentary rocks around the intruding ~490–500 Ma granitic magmas. In addition, we check the extent and timing of the Variscan prograde and retrograde medium-pressure metamorphism in the OSD. The results imply that Early Palaeozoic monazites, rarely preserved in both rock groups, document ~490–500 Ma volcanic and plutonic events related to the Gondwana's break-up and following disturbance of the Th–U–Pb system during younger, Variscan events. The monazite geochronology reveals no distinct Cambro-Ordovician thermal aureole around the post-granitic orthogneisses. However, no large-scale Variscan juxtaposition is evident between the two main OSD rock groups or within the meta-supracrustal rocks. Consistent P–T–d–t results for the meta-supracrustal rocks and the orthogneisses suggest that their precursors contacted before the Variscan tectonometamorphism. The directly contiguous ortho- and paragneisses together experienced tectonometamorphic processes at maximum depths that correspond to 7.5–8.0 kbar and maximum temperatures of ~600–620°C, as a result of the Variscan collision of Gondwana and Euramerica. The continental collision-related events intensified at ~360 Ma and ~330–340 Ma.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anczkiewicz, R., Szczepański, J., Mazur, S., Storey, C., Crowley, Q., Villa, I. M., Thirlwall, M. F. & Jeffries, T. E. 2007. Lu-Hf geochronology and trace element distribution in garnet: implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland. Lithos 95, 363–80.Google Scholar
Bakun-Czubarow, N. 1992. Quartz pseudomorphs after coesite and quartz exsolutions in eclogitic clinopyroxenes of the Złote Mountains in the Sudetes (SW Poland). Archiwum Mineralogiczne 48, 325.Google Scholar
Bakun-Czubarow, N. 1998. Ilmenite-bearing eclogites of the West Sudetes – their geochemistry and mineral chemistry. Archiwum Mineralogiczne 51, 29110.Google Scholar
Bakun-Czubarow, N. 2001. Variscan UHP rock series of the Orlica-Śnieżnik Dome in the Sudetes compared with the other (U)HP rocks of the Bohemian Massif. Abstracts of Sixth International Eclogite Conference, 2001 Shikoku, Japan, 56.Google Scholar
Borkowska, M., Choukroune, P., Hameurt, J. & Martineau, F. 1990. A geochemical investigation of age, significance and structural evolution of the Caledonian-Variscan granite-gneisses of the Śnieżnik metamorphic area (central Sudetes, Poland). Geologia Sudetica 25, 127.Google Scholar
Bröcker, M. & Klemd, R. 1996. Ultrahigh-pressure metamorphism in the Snieznik Mountains (Sudetes, Poland): P–T constraints and geological implications. The Journal of Geology 104, 417–33.Google Scholar
Bröcker, M., Klemd, R., Cosca, M., Brock, W., Larionov, A. N. & Rodionov, N. 2009. The timing of eclogite-facies metamorphism and migmatization in the Orlica-Śnieżnik complex, Bohemian Massif: constraints from a geochronological multi-method study. Journal of Metamorphic Geology 27, 385403.Google Scholar
Bröcker, M., Klemd, R., Kooijman, E., Berndt, J. & Larionov, A. 2010. Zircon geochronology and trace element characteristics of eclogites and granulites from the Orlica-Śnieżnik complex, Bohemian Massif. Geological Magazine 147, 339–62.Google Scholar
Brueckner, H. K., Medaris, L.G. & Bakun-Czubarow, N. 1991. Nd and Sr age and isotope patterns from Variscan eclogites of the eastern Bohemian Massif. Neues Jahrbuch für Mineralogie, Abhandlungen 163, 169–96.Google Scholar
Budzyń, B., Harlov, D. E., Kozub-Budzyń, G. A. & Majka, J. 2017. Experimental constraints on the relative stabilities of the two systems monazite-(Ce) - allanite-(Ce) - fluorapatite and xenotime-(Y) - (Y,HREE)-rich epidote - (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 MPa and 450–750°C. Mineralogy and Petrology, 111, 183217.Google Scholar
Budzyń, B. & Jastrzębski, M. 2015. Monazite stability and the maintenance of Th-U-total Pb ages during post-magmatic processes in granitoids and host metasedimentary rocks: a case study from the Sudetes (SW Poland). Geological Quarterly 60, 106–23.Google Scholar
Budzyń, B., Jastrzębski, M., Kozub-Budzyń, G. A. & Konečný, P. 2015. Monazite Th-U-total Pb geochronology and P–T thermodynamic modeling in a revision of the HP–HT metamorphic record in granulites from Stary Gierałtów (NE Orlica-Śnieżnik Dome, SW Poland). Geological Quarterly 59, 700–17.Google Scholar
Budzyń, B., Konečný, P. & Kozub-Budzyń, G. A. 2015. Stability of monazite and disturbance of the Th-U-Pb system under experimental conditions of 250–350°C and 200–400 MPa. Annales Societatis Geologorum Poloniae 85, 405–24.Google Scholar
Buriánek, D., Verner, K., Hanžl, P. & Krumlová, H. 2009. Ordovician metagranites and migmatites of the Svratka and Orlice-Sněžník Units, northeastern Bohemian Massif. Journal of Geosciences 54 (2), 181200.Google Scholar
Cháb, J., Stránik, Z. & Eliáš, M., 2007. Geologická mapa České republiky 1: 500 000. Prague: Czech Geological Survey.Google Scholar
Cherniak, D. J., Watson, E. B., Grove, M. & Harrison, T. M. 2004. Pb diffusion in monazite: a combined RBS/SIMS study. Geochimica et Cosmochimica Acta 68, 829–40.Google Scholar
Chopin, F., Schulmann, K., Skrzypek, E., Lehmann, J., Dujardin, J. R., Martelat, J. E., Lexa, O., Corsini, M., Edel, J. B., Štípská, P. & Pitra, P. 2012a. Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt). Tectonics 31, TC1013.Google Scholar
Chopin, F., Schulmann, K., Štípská, P., Martelat, J. E., Pitra, P., Lexa, O. & Pétri, B. 2012b. Microstructural and metamorphic evolution of a high pressure granitic orthogneiss during continental subduction (Orlica–Śnieżnik dome, Bohemian Massif). Journal of Metamorphic Geology 30, 347–76.Google Scholar
Cocks, L. R. M. & Torsvik, T. H. 2006. European geography in a global context from the Vendian to the end of the Palaeozoic. In European Lithosphere Dynamics. (eds Gee, D. G. & Stephenson, R. A.), pp. 8395. Geological Society of London, Memoir no. 32.Google Scholar
Cymerman, Z. 1992. Rotational ductile deformations in the Śnieżnik Metamorphic Complex. Geological Quarterly 36, 393420.Google Scholar
Cymerman, Z. 1997. Structure, kinematics and an evolution of the Orlica–Śnieżnik Dome, Sudetes. Prace Państwowego Instytutu Geologicznego 156, 1120.Google Scholar
Cymerman, Z., Piasecki, M. A. J. & Seston, R. 1997. Terranes and terrane boundaries in the Sudetes, northeast Bohemian Massif. Geological Magazine 134, 717–25.Google Scholar
Don, J. 1964. Góry Złote i Krowiarki jako elementy składowe metamorfiku Śnieżnika [Góry Złote and Krowiarki as compositional elements of the Śnieżnik Metamorphic Unit]. Geologia Sudetica 1, 79117 (in Polish with extended English summary).Google Scholar
Don, J. 1982. Tektonika łupków strefy Siennej oraz korelacja rozwoju gnejsów z etapami deformacji metamorfiku Śnieżnika [The Sienna Synform and the relationship of genesis to the deformational stages distinguished in the Śnieżnik Metamorphic Massif (Sudetes)]. Geologia Sudetica 17, 103–24 (in Polish with extended English summary).Google Scholar
Don, J., Dumicz, M., Wojciechowska, I. & Żelaźniewicz, A. 1990. Lithology and tectonics of the Orlica–Śnieżnik Dome, Sudetes – recent state of knowledge. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 197, 159–88.Google Scholar
Don, J., Skácel, J. & Gotowała, R. 2003. The boundary zone of the East and West Sudetes on the 1:50 000 scale geological map of the Velké Vrbno, Staré Město and Śnieżnik Metamorphic Units. Geologia Sudetica 35, 2559.Google Scholar
Drost, K., Linnemann, U., McNaughton, N., Fatka, O., Kraft, P., Gehmlich, M., Tonk, C. H. & Marek, J. 2004. New data on the Neoproterozoic-Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). International Journal of Earth Sciences 93, 742–57.Google Scholar
Faryad, S. W. & Kachlík, V. 2013. New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. Journal of Metamorphic Geology 31, 6382.Google Scholar
Fischer, G. 1936. Der Bau des Glatzer Schneegebirges. Jahrbuch Preussischen Geologischen Landesanstalt 56, 712–32.Google Scholar
Franke, W. 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In Orogenic Processes, Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O & Tanner, D.), pp. 3561. Geological Society of London, Special Publication no. 179.Google Scholar
Franke, W. & Żelaźniewicz, A. 2000. The eastern termination of the Variscides: terrane correlation and kinematic evolution. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 6386. Geological Society of London, Special Publication no. 179.Google Scholar
Gardes, E., Jaoul, O., Montel, J., Seydoux-Guillaume, A. M. & Wirth, R. 2006. Pb diffusion in monazite: an experimental study of Pb2++Th4+ ↔ 2Nd3+ interdiffusion. Geochimica et Cosmochimica Acta 70, 2325–36.Google Scholar
Gordon, S. M., Schneider, D. A., Manecki, M. & Holm, D. K. 2005. Exhumation and metamorphism of an ultrahigh-grade terrane: geochronometric investigations of the Sudetes Mountains (Bohemia), Poland and Czech Republic. Journal of the Geological Society, London 162, 841–55.Google Scholar
Gunia, T. 1990. Acritarcha i mikroproblematyki z wapieni krystalicznych okolicy Romanowa Górnego (Sudety Środkowe - Krowiarki) [Acritarcha and microproblematics of the crystalline limestones from the vicinity of Romanowo Górne (Central Sudetes - Krowiarki)]. Geologia Sudetica 24, 101–37 (in Polish with English summary).Google Scholar
Holland, T. & Blundy, J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433–47.Google Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.Google Scholar
Jastrzębski, M. 2009. A Variscan continental collision of the West Sudetes and the Brunovistulian terrane: a contribution from structural and metamorphic record of the Stronie Formation, the Orlica-Śnieżnik Dome, SW Poland. International Journal of Earth Sciences 98, 1901–23.Google Scholar
Jastrzębski, M., Budzyń, B. & Stawikowski, W. 2016. Structural, metamorphic and geochronological record in the Goszów quartzites of the Orlica-Śnieżnik Dome (SW Poland): implications for the polyphase Variscan tectonometamorphism of the Saxothuringian Terrane. Geological Journal 51, 455–79.Google Scholar
Jastrzębski, M., Stawikowski, W., Budzyń, B. & Orłowski, R. 2014. Migmatization and large-scale folding in the Orlica-Śnieżnik Dome, NE Bohemian Massif: Pressure-Temperature-time-deformation constraints on Variscan terrane assembly. Tectonophysics 630, 5474.Google Scholar
Jastrzębski, M., Żelaźniewicz, A., Majka, J., Murtezi, M., Bazarnik, J. & Kapitonov, I. 2013. Constraints on the Devonian–Carboniferous closure of the Rheic Ocean from a multi-method geochronology study of the Staré Město Belt in the Sudetes (Poland and the Czech Republic). Lithos 170–171, 5472.Google Scholar
Jastrzębski, M., Żelaźniewicz, A., Murtezi, M., Sergeev, S. & Larionov, A. N. 2015. The Moldanubian Thrust Zone – a terrane boundary in the Central European Variscides refined based on lithostratigraphy and U-Pb zircon geochronology. Lithos 220–223, 116–32.Google Scholar
Jastrzębski, M., Żelaźniewicz, A., Nowak, I., Murtezi, M. & Larionov, A. N. 2010. Protolith age and provenance of metasedimentary rocks in Variscan allochthon units: U–Pb SHRIMP zircon data from the Orlica–Śnieżnik Dome, West Sudetes, Geological Magazine 147, 416–33.Google Scholar
Klemd, R. & Bröcker, M. 1999. Fluid influence on mineral reactions in ultrahigh-pressure granulites: a case study in the Śnieżnik Mts. (West Sudetes, Poland). Contributions to Mineralogy and Petrology 135, 358–73.Google Scholar
Konečný, P., Siman, P., Holický, I., Janák, M. & Kollárová, V. 2004. Method of monazite dating by means of the electron microprobe. Mineralogia Slovaca, 36, 225–35 (in Slovak, with English abstract).Google Scholar
Kröner, A., Jaeckel, P., Hegner, E. & Opletal, M. 2001. Single zircon ages and whole-rock Nd isotopic systematic of early Paleozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerske hory, Karkonosze Mountains and Orlica–Śnieżnik Complex). International Journal of Earth Sciences 90, 304–24.Google Scholar
Kryza, R., Pin, C. & Vielzeuf, D. 1996. High-pressure granulites from the Sudetes (south-west Poland): evidence of crustal subduction and collision thickening in the Variscan Belt. Journal of Metamorphic Geology 14, 531–46.Google Scholar
Kusiak, M. A., Suzuki, K., Dunkley, D. J., Lekki, J., Bakun-Czubarow, N., Paszkowski, M. & Budzyń, B. 2008. EPMA and PIXE dating of monazite in granulites from Stary Gierałtów, NE Bohemian Massif, Poland. Gondwana Research 14, 675–85.Google Scholar
Lange, U., Bröcker, M. & Armstrong, R. 2005a. Sm–Nd and U–Pb dating of high-pressure granulites from the Zlote and Rychleby Mts (Bohemian Massif, Poland and Czech Republic). Journal of Metamorphic Geology 23, 133–45.Google Scholar
Lange, U., Bröcker, M., Armstrong, R., Żelaźniewicz, A., Trapp, E. & Mezger, K. 2005b. The orthogneisses of the Orlica-Śnieżnik complex (West Sudetes, Poland): geochemical characteristics, the importance of pre-Variscan migmatization and constraints on the cooling history. Journal of the Geological Society, London 162, 973–84.Google Scholar
Lange, U., Bröcker, M., Mezger, K. & Don, J. 2002. Geochemistry and Rb-Sr geochronology of a ductile shear zone in the Orlica–Śnieżnik Dome (West Sudetes, Poland). International Journal of Earth Sciences 91, 1005–16.Google Scholar
Lexa, O., Štípská, P., Schulmann, K., Baratoux, L. & Kröner, A. 2005. Contrasting textural record of two distinct metamorphic events of similar P-T conditions and different durations. Journal of Metamorphic Geology 23, 649–66.Google Scholar
Linnemann, U., Gerdes, A., Hofmann, M. & Marko, L. 2014. The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton – constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Research 244, 236–78.Google Scholar
Linnemann, U., Pereira, F., Jeffries, T. E., Drost, K. & Gerdes, A. 2008. The Cadomian Orogeny of the Rheic Ocean: the diachrony of the geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461, 2143.Google Scholar
Maluski, H., Rajlich, P. & Souček, J. 1995. Pre-Variscan, Variscan and early Alpine thermo-tectonic history of the north-eastern Bohemian Massif: 40Ar/39Ar study. Geologische Rundschau 84, 345–58.Google Scholar
Matte, P., Maluski, P. H., Rajlich, P. & Franke, W. 1990. Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177, 151–70.Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. & Oberc-Dziedzic, T. 2006. The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Mazur, S., Szczepański, J., Turniak, K. & McNaughton, N. J., 2012. Location of the Rheic suture in the eastern Bohemian Massif: evidence from detrital zircon data. Terra Nova 24, 199206.Google Scholar
Mazur, S., Turniak, L., Szczepański, J. & McNaughton, N. J. 2015. Vestiges of Saxothuringian crust in the Central Sudetes, Bohemian Massif: zircon evidence of a recycled subducted slab provenance. Gondwana Research 27, 825–39.Google Scholar
Mikulski, S. Z., Williams, I. S. & Bagiński, B. 2013. Early Carboniferous (Viséan) emplacement of the collisional Kłodzko–Złoty Stok granitoids (Sudetes, SW Poland): constraints from geochemical data and zircon U–Pb ages. International Journal of Earth Sciences 102, 1007–27.Google Scholar
Montel, J. M., Foret, S., Veschambre, M., Nicollet, C. & Provost, A. 1996. Electron microprobe dating of monazite. Chemical Geology 131, 3753.Google Scholar
Murphy, J. B., Gutiérrez-Alonso, G., Nance, R. D., Fernández-Suárez, J., Keppie, J. D., Quesada, C., Strachan, R. A. & Dostal, J. 2006. Origin of the Rheic ocean: rifting along a Neoproterozoic suture? Geology 34, 325–8.Google Scholar
Murtezi, M. 2006. The acid metavolcanic rocks of the Orlica–Śnieżnik Dome: their origin and tectono-metamorphic evolution. Geologia Sudetica 38, 138.Google Scholar
Murtezi, M. & Fanning, M. 2005. Petrogenesis, age and tectono-metamorphic evolution of the acid metavolcanites of the Stronie Formation (Orlica-Śnieżnik Dome, Sudetes, SW Poland). Geolines 19, 85.Google Scholar
Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., Strachan, R. A. & Woodcock, N. H. 2012. A brief history of the Rheic Ocean. Geoscience Frontiers 3, 125–35.Google Scholar
Oberc, J. 1965. Postępy geologii prekambru na Dolnym Śląsku [Advances in the Pre-Cambrian geology of Lower Silesia]. Przegląd Geologiczny 13, 298304 (in Polish with English abstract).Google Scholar
Oberc-Dziedzic, T., Kryza, R., Mochnacka, K. & Larionov, A. 2010. Ordovician passive continental margin magmatism in the Central-European Variscides: U-Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. International Journal of Earth Sciences 99, 2746.Google Scholar
Oberc-Dziedzic, T., Kryza, R. & Pin, C. 2015. Variscan granitoids related to shear zones and faults: examples from the Central Sudetes (Bohemian Massif) and the Middle Odra Fault Zone. International Journal of Earth Sciences 104, 1139–66.Google Scholar
Peřestý, V., Lexa, O., Holder, R., Jeřabek, P., Racek, M., Štípská, P., Schulmann, K. & Hacker, B. 2017a. Metamorphic inheritance of Rheic passive margin evolution and its early-Variscan overprint in the Teplá-Barrandian Unit, Bohemian Massif. Journal of Metamorphic Geology 35, 327–55.Google Scholar
Peřestý, V., Lexa, O., Štípská, P., Jeřabek, P. & Racek, M. 2017b. Pre-Variscan rift-related structure and metamorphism in the Domažlice Crystalline Complex (the Teplá-Barrandian Domain, Bohemian Massif). Acta Mineralogica-Petrographica 32, 31–2.Google Scholar
Petrík, I. & Konečný, P. 2009. Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nízke Tatry Mountains, Western Carpathians, Slovakia: chemical dating and evidence for disequilibrium melting. American Mineralogist 94, 957–74.Google Scholar
Pin, C., Kryza, R., Oberc-Dziedzic, T., Mazur, S., Turniak, K. & Waldhausrová, J. 2007. The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm-Nd isotope and geochemical data. Geological Society of America Special Paper 423, 209–29.Google Scholar
Pin, C. & Marini, F. 1993. Early Ordovician continental break-up in Variscan Europe: Nd–Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29, 177–96.Google Scholar
Redlińska-Marczyńska, A. & Żelaźniewicz, A. 2011. Gneisses in the Orlica-Śnieznik Dome, West Sudetes: a single batholitic protolith or a more complex origin? Acta Geologica Polonica 61, 307–39.Google Scholar
Redlińska-Marczyńska, A., Żelaźniewicz, A. & Fanning, C. M. 2016. An insight into a gneiss core of the Orlica-Śnieżnik Dome, NE Bohemian Massif: new structural and U–Pb zircon data. Geological Quarterly 60, 714–36.Google Scholar
Sawicki, L. 1995. Geological map of Lower Silesia with adjacent Czech and German territories 1:100 000. Warsaw: Państwowy Instytut Geologiczny.Google Scholar
Schmidt, M. W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110, 304–10.Google Scholar
Schneider, D. A., Zahniser, S. J., Glascock, J. M., Gordon, S. M. & Manecki, M. 2006. Thermochronology of the West Sudetes (Bohemian Massif): rapid and repeated eduction in the eastern Variscides, Poland and Czech Republic. American Journal of Science 306, 846–73.Google Scholar
Skrzypek, E., Bosse, V., Tetsuo Kawakami, T., Martelat, J. E. & Štípská, P. 2017. Transient allanite replacement and prograde to retrograde monazite (re)crystallization in medium-grade metasedimentary rocks from the Orlica-Śnieżnik Dome (Czech Republic/Poland): textural and geochronological arguments. Chemical Geology 449, 4157.Google Scholar
Skrzypek, E., Lehmann, J., Szczepański, J., Anczkiewicz, R., Štípská, P., Schulmann, K., Kröner, A. & Białek, D. 2014. Time-scale of deformation and intertectonic phases revealed by P-T-D-t relationships in the orogenic middle crust of the Orlica-Śnieżnik Dome, Polish/Czech Central Sudetes. Journal of Metamorphic Geology 32, 9811003.Google Scholar
Skrzypek, E., Štípská, P., Schulmann, K., Lexa, O. & Lexova, M. 2011. Prograde and retrograde metamorphic fabrics – a key for understanding burial and exhumation in orogen (Bohemian Massif). Journal of Metamorphic Geology 29, 451–72.Google Scholar
Smulikowski, K. 1979. Ewolucja polimetamorficzna krystaliniku Śnieżnika Kłodzkiego i Gór Złotych w Sudetach [Polymetamorphic evolution of the Śnieżnik Kłodzki–Góry Złote Metamorphic Unit in the Sudetes.]. Geologia Sudetica 14, 776 (in Polish with extended English summary).Google Scholar
Stawikowski, W. 2001. Strefy kontaktowe eklogitów i gnejsów w jednostkach Gierałtowa i Śnieżnika (kopuła orlicko-śnieżnicka) [Contact zones between eclogites and gneisses in the Gierałtów and Śnieżnik Units (Orlica-Śnieżnik-Dome)]. Przegląd Geologiczny 49, 153–60 (in Polish with English abstract).Google Scholar
Stawikowski, W. 2002. Contacts between high-P eclogites and gneisses in the Lądek–Śnieżnik Metamorphic Unit, the West Sudetes. GeoLines 14, 84–5.Google Scholar
Stawikowski, W. 2006. The problem of garnet composition in eclogite-bearing gneisses from the Śnieżnik Metamorphic Complex (Western Sudetes). GeoLines 20, 122–3.Google Scholar
Steltenpohl, M. G., Cymerman, Z., Krogh, E. J. & Kunk, M. J. 1993. Exhumation of eclogitized continental basement during Variscan lithospheric delamination and gravitational collapse, Sudety Mountains, Poland. Geology 21, 1111–4.Google Scholar
Štipská, P., Chopin, F., Skrzypek, E., Schulmann, K., Pitra, P., Lexa, O., Martelat, J. E., Bollinger, C. & Žáčková, E. 2012. The juxtaposition of eclogite and mid-crustal rocks in the Orlica–Śnieżnik Dome, Bohemian Massif. Journal of Metamorphic Geology 30, 213–34.Google Scholar
Štípská, P., Schulmann, K. & Kröner, A. 2004. Vertical extrusion and middle crust spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). Journal of Metamorphic Geology 22, 179–98.Google Scholar
Štípská, P., Schulmann, K., Thompson, A. B., Ježek, J. & Kröner, A. 2001. Thermo-mechanical role of a Cambro-Ordovician paleorift during the Variscan collision: the NE margin of the Bohemian Massif. Tectonophysics 332, 239–53.Google Scholar
Szczepański, J. & Ilnicki, S. 2014. From Cadomian arc to Ordovician passive margin: geochemical records preserved in metasedimentary successions of the Orlica-Śnieżnik Dome in SW Poland. International Journal of Earth Sciences 103, 627–47.Google Scholar
Tait, J. A., Bachtadse, V., Franke, W. & Soffel, H. C. 1997. Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geologische Rundschau 86, 585–98.Google Scholar
Teisseyre, J. 1961. Skały wapienno-krzemianowe masywu Śnieżnika [The calc-silicate rocks of the Śnieżnik Mountains in the Sudetes]. Archiwum Mineralogiczne 23, 155–96 (in Polish with English abstract).Google Scholar
Turniak, K., Mazur, S. & Wysoczanski, R. 2000. SHRIMP zircon geochronology and geochemistry of the Orlica-Śnieżnik gneisses (Variscan belt of Central Europe) and their tectonic implications. Geodinamica Acta 13, 293312.Google Scholar
Twyrdy, M. & Żelaźniewicz, A. 2017. Indications of HP events in the volcanosedimentary succession of the Orlica–Śnieżnik Dome, NE Bohemian Massif: data from a marble-amphibolite interface. Geological Quarterly 61, 435–49.Google Scholar
von Raumer, J. F. & Stampfli, G. M. 2008. The birth of the Rheic Ocean – Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461, 920.Google Scholar
von Raumer, J. F., Stampfli, G. M., Arenas, R. & Sánchez Martínez, S. 2015. Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. International Journal of Earth Sciences 104, 1107–21.Google Scholar
Vozárová, A., Konečný, P., Šarinová, K. & Vozár, J. 2014. Ordovician and Cretaceous tectonothermal history of the Southern Gemericum Unit from microprobe monazite geochronology (Western Carpathians, Slovakia). International Journal of Earth Sciences (Geologische Rundschau) 103, 1005–22.Google Scholar
Walczak, K. 2011. Interpretacja datowań Sm-Nd i Lu-Hf granatów w skałach wysokociśnieniowych i wysokotemperaturowych w świetle badań dystrybucji pierwiastków śladowych [Interpretation of Sm-Nd and Lu-Hf dating of garnets in high-pressure and high-temperatures rocks in the light of REE distribution studies]. Ph.D. thesis, Institute of Geological Sciences, Polish Academy of Sciences, Kraków. Published thesis (In Polish).Google Scholar
Whitney, D. L. & Evans, B. W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–7.Google Scholar
Williams, M. L., Jercinovic, M. J., Goncalves, P. & Mahan, K. 2006. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chemical Geology 225, 115.Google Scholar
Williams, M. L., Jercinovic, M. J. & Hetherington, C. J. 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences 35, 135175.Google Scholar
Williams, M. L., Jercinovic, M. J., Harlov, D. E., Budzyń, B. & Hetherington, C. J., 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology 283, 218–25.Google Scholar
Wojciechowska, I. 1972. Preliminary results of investigation on so-called “Quartzites” in the neighbourhood of Romanowo (Stronie Complex), NW part of Krowiarki (East Sudetes). Bulletin of the Polish Academy of Sciences, Earth Sciences 20, 273–77.Google Scholar
Wojciechowska, I. 1993. Budowa geologiczna i tektonika Gór Złotych i Krowiarek jako tło rozwoju mineralizacji rudnej (Ziemia Kłodzka, Sudety) [Geological structure and tectonics of Góry Złote and Krowiarki as a background for development of ore mineralization (Ziemia Kłodzka, Sudety)]. Prace Geologiczno-Mineralogiczne, Acta Univeritatis Wratislaviensis 33, 549 (in Polish with English abstract).Google Scholar
Wojciechowska, I., Ziółkowska-Kozdrój, M. & Gunia, P. 2001. Petrography and geochemistry of leptites from the Skrzynka Dislocation Zone (Eastern Sudetes, SW Poland) – preliminary results. Bulletin of the Polish Academy of Sciences, Earth Sciences 49, 111.Google Scholar
Žák, J., Kraft, P. & Hajná, J. 2013. Timing, styles, and kinematics of Cambro-Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. International Journal of Earth Sciences 102, 415–33.Google Scholar
Żelaźniewicz, A. 1988. Orthogneisses due to irrotational extension, a case from the Sudetes, Bohemian massif. Geologische Rundschau 77, 671–82.Google Scholar
Żelaźniewicz, A, Dörr, W., Bylina, P., Franke, W., Haack, U., Heinisch, H., Schastok, J., Grandmontagne, K. & Kulicki, C., 2004. The eastern continuation of the Cadomian orogen: U-Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and the northern Czech Republic. International Journal of Earth Sciences 93, 773–81.Google Scholar
Żelaźniewicz, A., Jastrzębski, M., Redlińska-Marczyńska, A. & Szczepański, J. 2014. The Orlica–Śnieżnik Dome, the Sudetes, in 2002 and 12 years later. Geologia Sudetica 42, 105–23.Google Scholar
Żelaźniewicz, A., Nowak, I., Larionov, A. & Presnyakov, S. 2006. Syntectonic Lower Ordovician migmatite and post-tectonic Upper Viséan syenite in the western limb of the Orlica-Śnieżnik Dome, West Sudetes: U-Pb SHRIMP data from zircons. Geologia Sudetica 38, 6380.Google Scholar
Supplementary material: File

Jastrzębski et al supplementary material

Jastrzębski et al supplementary material 1

Download Jastrzębski et al supplementary material(File)
File 24.1 KB
Supplementary material: File

Jastrzębski et al supplementary material

Jastrzębski et al supplementary material 2

Download Jastrzębski et al supplementary material(File)
File 165.9 KB
Supplementary material: File

Jastrzębski et al supplementary material

Jastrzębski et al supplementary material 3

Download Jastrzębski et al supplementary material(File)
File 443.9 KB
Supplementary material: File

Jastrzębski et al supplementary material

Jastrzębski et al supplementary material 4

Download Jastrzębski et al supplementary material(File)
File 454.1 KB