Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T18:03:02.065Z Has data issue: false hasContentIssue false

High-Pressure, High-Temperature Syntheses of Super-Hard α-Rhombohedral Boron-rich Solids in the B-C-N-O

Published online by Cambridge University Press:  10 February 2011

Hervé Hubert
Affiliation:
Department of Chemistry & Biochemistry and Arizona State University, Tempe, AZ 85287.
Laurence A.J. Garvie
Affiliation:
Department of Geology, Arizona State University, Tempe, AZ 85287.
Bertrand Devouard
Affiliation:
Department of Geology, Arizona State University, Tempe, AZ 85287.
Paul F. McMillan
Affiliation:
Department of Chemistry & Biochemistry and Arizona State University, Tempe, AZ 85287.
Get access

Abstract

We prepared α-rhombohedral (α-rh.) B-rich materials in the B-C-N-O system at high-pressures and temperatures. Samples were synthesized using a multianvil device and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and parallel electron energy-loss spectroscopy (PEELS). The B-C-O compounds were obtained by reducing B2O3 with B, or mixtures of B and C between 1 to 10 GPa and 1200° and 1800° C In the B-O system we synthesized boron suboxide (nominally B6O) of high purity, crystallinity, and close to stoichiometric. Quantitative analyses give B6O0.95 and B6O0.77 for high-pressure and room-pressure samples, respectively. Between 4 to 5.5 GPa, B6O formed as macroscopic near-perfect regular icosahedra (to 30 μm in diameter). In the B-C-O system, intermediate phases were prepared showing evidence of solid solution between B4C and B6O. Boron carbide crystals, to 20 μm, containing a significant amount of O, typically B6C1.1O0.33 and B6C1.28O0.31, were grown for mixtures in which B and C were reacted with excess B2O3 at 7.5 GPa and 1700 °C. We also report the first conclusive bulk synthesis of a new boron nitride, B6N1-x. This subnitride was synthesized from B and hexagonal BN at 7.5 GPa and 1700 °C. XRD and PEELS shows that the boron subnitride has the α-rh. B structure and average composition B6N0.92

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H., Nature 1955, 176, 51.Google Scholar
(2) Wentorf, R. H., J. Chenu Phys. 1957, 26, 956.Google Scholar
(3) Ellison Hayashi, C.; Emond, G. T.; Kuo, S. Y., Abrasion of surfaces with boron suboxide, US patent No 920357,. 1994: U.S.A.Google Scholar
(4) Badzian, A. R., Appl. Phys. Lett. 1988, 53, 2495.Google Scholar
(5) Rizzo, H. F.; Simmons, W. C.; Bielstein, H. O., J. Electrochem. Soc. 1962, 109, 1079.Google Scholar
(6) Lundström, T.; Andreev, Y. G., Mat. Sci. Eng. 1996, A209, 16.Google Scholar
(7) Naslain, R. In: Boron and Refractory Borides; Matkovitch, V. L. Ed.; Springer-Verlag: Berlin, Heidelberg, 1977; 139.Google Scholar
(8) Matkovitch, V. I.; Economy, J. In: Boron and Refractory Borides; Matkovitch, V. I., Ed.; Springer-Verlag: Berlin, Heidelberg, 1977; 78.Google Scholar
(9) Hubert, H.; Devouard, B.; Garvie, L. A. J.; O'Keeffe, M.; Buseck, P. R.; Petuskey, W. T.; McMillan, P. F., Nature in press.Google Scholar
(10) Hubert, H.; Garvie, L. A. J.; Devouard, B.; Buseck, P. R.; Petuskey, W. T.; McMillan, P. F., Chemistry of Materials in press.Google Scholar
(11) Hubert, H.; Garvie, L. A. J.; Buseck, P. R.; Petuskey, W. T.; McMillan, P. F., J. Solid State Chem. in press.Google Scholar
(12) Garvie, L. A. J.; Hubert, H.; Buseck, P. R.; Petuskey, W. T.; McMillan, P. F., J. Solid State Chem. in press.Google Scholar
(13) Saitoh, H.; Yoshida, K.; Yarbrough, W. A., J. Mater. Res. 1993, 8, 8.Google Scholar
(14) Condon, J. B.; Holcombe, C. E.; Johnson, D. H.; Steckel, L. M., Inorg. Chem. 1976, 15, 2173.Google Scholar
(15) Walker, D.; Carpenter, M. A.; Hitch, C. M., American Mineralogist 1990, 75, 1020.Google Scholar
(16) Higashi, L.; Kobayashi, M.; Bernhard, J.; Brodhag, C.; Thévenot, F. In: Boron-Rich Solids, A.I.P. Conference and Proceedings; Emin, D.; Aselage, T.; Beckel, C. L.; Howard, I. A.; Wood, C. Ed.; 1991; 231, 201.Google Scholar
(17) Petrak, D. R.; Ruh, R.; Goosey, B. F. In: 5th Materials Research Symposium; ed.; NBS Spec. Pub.: 1972; 364, 605.Google Scholar
(18) Bolmgren, H.; Lundström, T.; Okada, S. In: Boron-Rich Solids, A.I.P. Conference and Proceedings; Emin, D.; Aselage, T.; Beckel, C. L.; Howard, I. A.; Wood, C. Ed.; 1991; 231, 197.Google Scholar
(19) Brodhag, C.; Thévenot, F., J. Less-Common Met. 1986, 117, 1.Google Scholar
(20) LaPlaca, S.; Post, B., Planseeber. Pulvermet. 1961, 9, 109.Google Scholar
(21) Lundström, T.; Bolmgren, H. In: 11th International Symposium on Boron, Borides and Related Compounds; Uno, R.; Higashi, L. Ed.; JJAP Series: Tsukuba, 1994; 10, 1.Google Scholar
(22) Pasternak, R. A., Acta Crystallogr. 1959, 12, 612.Google Scholar
(23) Liu, X.; Zhao, X.; Hou, W.; Su, W., J. Alloys Comp. 1995, 223, L5.Google Scholar
(24) Larson, A. C. In: Boron-rich solids, AIP Conference Proceedings; Emin, D.; Aselage, T.; Beckel, C. L.; Howard, I. A.; Wood, C. Ed.; American Institute of Physics: New-York, 1986; 140, 109.Google Scholar