Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T18:57:29.259Z Has data issue: false hasContentIssue false

Interfacial Reactions Between Amorphous W-Si Thin Films And Polycrystalline Overlayers

Published online by Cambridge University Press:  26 February 2011

R. E. Thomas
Affiliation:
Materials Science Center, University of Wisconsin-Madison, 1500 Johnson Drive, Madison, WI 53706
J. H. Perepezko
Affiliation:
Materials Science Center, University of Wisconsin-Madison, 1500 Johnson Drive, Madison, WI 53706
J. D. Wiley
Affiliation:
Materials Science Center, University of Wisconsin-Madison, 1500 Johnson Drive, Madison, WI 53706
Get access

Abstract

Interactions between amorphous metal thin films and either a substrate or an overlayer can limit their effectiveness as diffusion barriers. We have found in previous studies that Au and Al polycrystalline thin films in contact with amorphous W-Si lowers the crystallization temperature of the a-(W-Si) by at least 100C. In contrast Cu and Mo have no apparent effect on the stability of the amorphous layer. The mechanisms leading to premature crystallization are not well understood. Amorphous W .72Si.28 was deposited by D.C. sputtering onto single crystal Si substrates. Overlayers of Al were then evaporated onto the W-Si. Using Auger electron spectroscopy depth profiling coupled with cross-section TEM, we have studied interfacial reactions between the amorphous layer and polycrystalline Al. Auger profiling results show that in the case of Al overlayers, W and Si diffuse out of the a-(W-Si) into the Al where WAl12 forms. These results can be explained in the context of three binary diffusion couples, W-Si, W-Al, Al-Si, and the individual interactions associated with these couples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dobisz, E.A., Doyle, B.L., Perepezko, J.H., Wiley, J.D. and Peercy, P.S., Mat. Res. Soc. Symp. Proc. 32, 479 (1985).Google Scholar
2. Suni, I., Nicolet, M.-A., Pai, C.S. and Lau, S.S., Thin Solid Films 107, 73 (1983).Google Scholar
3. Thomas, R.E., Perepezko, J.H. and Wiley, J.D., presented at the 1985 AVS TRISA Meeting, Oconomowoc, WI, 1985 (to be published. Appl. Surf. Sci.).Google Scholar
4. van Gurp, G.J., Daams, J.L.C., van Oostrom, A., Augustus, L.J.M. and Tamminga, Y., J. Appl. Phys. 50, 6915 (1979).Google Scholar
5. Murarka, S.P., Silicides for VLSI Applications, (Academic Press, New York, 1983).Google Scholar
6. Chen, J.Y. and Roth, L.B., Solid State Technology 27, 145 (1984).Google Scholar
7. Bravman, J.C. and Sinclair, R., Jnl. of Electron Microscopy Techniques 1, 53 (1984).Google Scholar
8. Mathieu, H.J., McClure, D.E. and Landolt, D., Thin Solid Films 38, 281 (1976).Google Scholar
9. Nakamura, N., Nicolet, M.-A., Mayer, J.W., Blattner, R.J. and Evans, C.A. Jr, J. Appl. Phys. 46, 4678, (1975).Google Scholar
10. Thompson, R.D., Tu, K.N. and Ottaviani, G., J. Appl. Phys. 58, 705 (1985).Google Scholar
11. Locker, L.D. and Capio, C. D., J. Appl. Phys. 44, 4366 (1973).Google Scholar
12. Akitmoto, K. and Watanabe, K., Appl. Phys. Lett. 43, 445, (1981).Google Scholar
13. Anderson, W.T. Jr, Christou, A. and Davey, J.E., Thin Solid Films, 104, 57, (1983).Google Scholar
14. Ohnishi, T., Yokoyama, N., Ondera, H., Suzuki, S. and Shibatomi, A., Appl. Phys. Lett. 43, 600, (1983).Google Scholar
15. Goldschmidt, H.J., Catherall, E.A. and Walker, M.J., Air Force Technical Report No. AFML-TR-68–302, 1969.Google Scholar
16. Hansen, M., Constitution of Binary Alloys, (McGraw-Hill, New York, 1958).Google Scholar
17. McCaldin, J.O. and Sankur, H., Appl. Phys. Lett. 19, 524, (1971).Google Scholar
18. Krafcsik, I., Gyulai, J., Palmstrom, C.J. and Mayer, J.W., Appl. Phys. Lett. 43, 1015, (1983).Google Scholar