Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T04:16:54.479Z Has data issue: false hasContentIssue false

The Effect on Thermoelectric Properties of Cd Substitution in PbTe

Published online by Cambridge University Press:  31 January 2011

Kyunghan Ahn
Affiliation:
k-ahn@northwestern.edu, Northwestern University, Chemistry, Evanston, Illinois, United States
Mi-Kyung Han
Affiliation:
mikihan@snu.ac.kr, Northwestern University, Chemistry, Evanston, Illinois, United States
Derek Vermeulen
Affiliation:
dv@phys.ksu.edu, University of Michigan, Physics, Ann Arbor, Michigan, United States
Steven Moses
Affiliation:
smoses@umich.edu, University of Michigan, Physics, Ann Arbor, Michigan, United States
Ctirad Uher
Affiliation:
cuher@umich.edu, University of Michigan, Physics, Ann Arbor, Michigan, United States
Mercouri Kanatzidis
Affiliation:
m-kanatzidis@northwestern.edu, Northwestern University, Chemistry, Evanston, Illinois, United States
Get access

Abstract

A recent theoretical study suggested that the substitution of Cd in PbTe can result in a distortion in the electronic density of states (DOS) near the bottom of the conduction band in PbTe. In this study we explored the effect of Cd doping on the thermoelectric properties of PbTe in an effort to test the theoretical prediction that DOS distortion can increase the Seebeck coefficient. We present detailed investigation of structural and spectroscopic data, transmission electron microscopy, as well as transport properties of samples of PbI2 doped PbTe-x% CdTe (x = 1, 3, 5, 7, 10). All samples follow the Pisarenko relationship and no enhancement of the Seebeck coefficient was observed due to DOS distortions. A low lattice thermal conductivity was achieved by nanostructuring observed via high resolution transmission electron microscopy. A maximum ZT of ˜1.2 at ˜720 K was achieved for the 1% CdTe sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bell, L. E., Science 321, 1457 (2008).10.1126/science.1158899Google Scholar
2 Snyder, G. J. and Toberer, E. S., Nature Mater. 7, 105 (2008).Google Scholar
3 Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
4 Androulakis, J., Lin, C.-H., Kong, H.-J., Uher, C., Wu, C.-I., Hogan, T., Cook, B.A., Caillat, T., M, K.. , Paraskevopoulos, and Kanatzidis, M. G., J. Am. Chem. Soc. 129, 9780 (2007).Google Scholar
5 Sootsman, J. R., Kong, H., Uher, C., D'Angelo, J. J., Wu, C.-I., Hogan, T. P., Caillat, T., and Kanatzidis, M. G., Angew. Chem. Int. Ed. 47, 8618 (2008).10.1002/anie.200803934Google Scholar
6 Ahmad, S., Mahanti, S. D., Hoang, K., and Kanatzidis, M. G., Phys. Rev. B 74, 155205 (2006).Google Scholar
7 Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G. J., Science, 321, 554 (2008).10.1126/science.1159725Google Scholar
8 Leute, V. and Schmidt, R., Z. Phys. Chem. 172, 81 (1991).Google Scholar
9 Thiagarajan, S. J., Jovovic, V., and Heremans, J. P., Phys. Stat. Sol. (RRL) 1, 256 (2007).Google Scholar
10 Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G., and Ren, Z., Science 320, 634 (2008).10.1126/science.1156446Google Scholar