Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T05:34:28.169Z Has data issue: false hasContentIssue false

Last glacial maximum environments in northwestern Patagonia revealed by fossil small mammals

Published online by Cambridge University Press:  20 January 2017

Mauro N. Tammone*
Affiliation:
Unidad de Investigación Diversidad, Sistemática y Evolución, Centro Nacional Patagónico (CENPAT-CONICET), Casilla de Correo 128, 9120 Puerto Madryn, Chubut, Argentina Programa de Estudios Aplicados a la Conservación (CENAC-PNNH, CONICET), Bariloche, Río Negro, Argentina
Adan Hajduk
Affiliation:
Museo de la Patagonia “F. P. Moreno” (APN-CONICET), Bariloche, Río Negro, Argentina
Pablo Arias
Affiliation:
Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC), Universidad de Cantabria, Av. de los Castros s/n, 39005 Santander, Spain
Pablo Teta
Affiliation:
Unidad de Investigación Diversidad, Sistemática y Evolución, Centro Nacional Patagónico (CENPAT-CONICET), Casilla de Correo 128, 9120 Puerto Madryn, Chubut, Argentina
Eileen A. Lacey
Affiliation:
Museum of Vertebrate Zoology, 3101 VLSB, University of California, Berkeley, CA 94720-3140, USA
Ulyses F.J. Pardiñas
Affiliation:
Unidad de Investigación Diversidad, Sistemática y Evolución, Centro Nacional Patagónico (CENPAT-CONICET), Casilla de Correo 128, 9120 Puerto Madryn, Chubut, Argentina
*
*Corresponding author at: Programa de Estudios Aplicados a la Conservación (CENAC-PNNH, CONICET), Bariloche, Río Negro. Argentina.E-mail address:mtammone@gmail.com (M.N. Tammone).

Abstract

Comparisons of historical and modern assemblages of mammals can yield important insights into patterns and processes of environmental change. Here, we present the first analyses of small mammal assemblages present in northern Patagonia during the last glacial maximum (LGM). Using remains obtained from owl pellets excavated from an archeological cave site (Arroyo Corral I, levels VII–V, carbon dates of 22,400–21,530 cal yr BP), we generate estimates of the minimum number of individuals for all species detected; these estimates, in turn are used to determine relative species abundances. Comparisons of these data with similar analyses of small mammal remains obtained from a second archeological site (ACoII, levels IV–V, carbon dates of 10,010–9220 cal yr BP) as well as from modern owl pellets reveal pronounced changes in relative species abundance since the LGM. In particular, Euneomys chinchilloides and Ctenomys sociabilis – the predominant species during the LGM – declined markedly, suggesting a change from open, bare habitat punctuated by patches of wet meadows and shrubs to the more densely vegetated mosaic of ecotone habitats found in this region today. These data provide important new insights into the environmental changes that have occurred in northern Patagonia over the last 20,000 years.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amico, G., and Aizen, M.A. Mistletoe seed dispersal by a marsupial. Nature 408, (2000). 929930.Google Scholar
Andrade, A., and Teta, P. Micromamíferos (Rodentia y Didelphimorphia) del Holoceno Tardío del sitio arqueológico alero Santo Rosario (provincia de Río Negro, Argentina). Atek Na 1, (2003). 273287.Google Scholar
Andrews, P. Owls, Caves and Fossils. Natural History Museum. (1990). University of Chicago Press, London.Google Scholar
Arias, P., Hajduk, A., Crivelli, E., Chauvin, A.M., Albornoz, A.M., Armendariz, Á., Caracotche, S., Cueto, M., Fernández, M.M., Fernández Sánchez, P., Lezcano, M.J., Palacio, E., Tapia, J., Tammone, M.N., Teira, L.C., and Vallejo, J. El poblamiento temprano del noroeste de la Patagonia argentina. Trabajos desarrollados durante 2011. Informes y trabajos 9, (2013). 1941.Google Scholar
Ashworth, A. Quaternary Fossil Beetle Assemblages from South America. Encyclopedia of Quaternary Science. (2006). Elsevier, Amsterdam.Google Scholar
Avery, D.M. The environment of early modern human at Border Cave, South Africa: micromammalian evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 91, (1992). 7187.CrossRefGoogle Scholar
Barnosky, A.D. Defining climate's role in ecosystem evolution: clues from Late Quaternary mammals. Historical Biology 8, (1994). 173190.Google Scholar
Barnosky, A.D., Rouse, T.I., Hadly, E.A., Wood, D.L., Keesing, F.L., and Schmidt, V.A. Comparison of mammalian response to glacial–interglacial transitions in the middle and late Pleistocene. Stewart, K.M., and Seymour, K.L. Palaeoecology and Palaeoenvironments of Late Cenozoic Mammals. (1996). University of Toronto, 1633.Google Scholar
Blois, J.L., McGuire, J.L., and Hadly, E.A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, (2010). 771775.CrossRefGoogle ScholarPubMed
Bran, D. Las regiones ecológicas de la Patagonia y sus principales formaciones vegetales. INTA Principios de Ecología y Conservación de los Recursos Naturales de la Patagonia. (2000). INTA, Buenos Aires. 93100.Google Scholar
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, (2009). 337360.Google Scholar
Cartwright, A., Quade, J., Stine, S., Adams, K.D., Broecker, W., and Cheng, H. Chronostratigraphy and lake-level changes of Laguna Cari-Laufquén, Río Negro, Argentina. Quaternary Research 76, (2011). 430440.CrossRefGoogle Scholar
Chan, Y.L., Lacey, E.A., Pearson, O.P., and Hadly, E.A. Ancient DNA reveals Holocene loss of genetic diversity in a South American rodent. Biology Letters 1, (2005). 423426.CrossRefGoogle Scholar
Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, (1993). 117143.Google Scholar
Colwell, R.K., Mao, C.X., and Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, (2004). 27172727.Google Scholar
Crivelli Montero, E.A., Curzio, D.E., and Silveira, M.J. La estratigrafia de la Cueva Traful I (Provincia del Neuquén). Praehistoria 1, (1993). 9160.Google Scholar
Fernández, F.J., Ballejos, F., Moreira, G.J., Tonni, E.P., and De Santis, L.J. Roedores cricétidos de la Provincia de Mendoza: guía cráneo-dentaria orientada para su aplicación en estudios zooarqueológicos. (2011). Universitas, Córdoba.Google Scholar
Fernández, F.J., Teta, P., Barberena, R., and Pardiñas, U.F.J. Small mammal remains from Cueva Huenul 1, northern Patagonia, Argentina: Taphonomy and paleoenvironments since the Late Pleistocene. Quaternary International 278, (2012). 2231.CrossRefGoogle Scholar
Formoso, A.E. Ensambles de micromamíferos y variables ambientales en Patagonia continental extra-andina Argentina. (Ph.D. thesis) (2013). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata.Google Scholar
Galloway, R.W., Markgraf, V., and Bradbury, J.P. Dating shorelines of lakes in Patagonia, Argentina. Journal of South American Earth Sciences 1, (1988). 195198.Google Scholar
Glasser, N.F., Harrison, S., Winchester, V., and Aniya, M. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Change 43, (2004). 79101.Google Scholar
Gonzales, M.N., Musacchio, E.A., Garcia, A., Pascual, R., and Coret, A.E. Las lineas de costa Holoceno de la salina del Bebedero (San Luis, Argentina). Implicaciones paleoambiento les de sus microfosiles. Actas VIII Congreso Geologico Argentino, San Luis 3, (1981). 617628.Google Scholar
Grayson, D.K. The paleontology of Gatecliff Shelter: small mammals. Thomas, D.H. The Archaeology of Monitor Valley: 2. Gatecliff Shelter. Anthropological Papers of the American Museum of Natural History 59, (1983). 99126.Google Scholar
Grayson, D.K. Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas. (1984). Academic Press, Inc., New York.Google Scholar
Hadly, E.A. Influence of Late-Holocene climate on Northern Rocky Mountain mammals. Quaternary Research 46, (1996). 298310.Google Scholar
Hadly, E.A., Kohn, M.H., Leonard, J.A., and Wayne, R.K. A genetic record of population isolation in pocket gophers during Holocene climatic change. Proceedings of the National Academy of Sciences 95, (1998). 68936896.Google Scholar
Hajduk, A., Albornoz, A., and Lezcano, M.J. El “Mylodon” en el patio de atrás. Contra Viento y Marea, V Jornadas de Arqueología de la Patagonia (2004). 715732.Google Scholar
Hajduk, A., Albornoz, A., and Lezcano, M.J. Levels with extinct fauna in the forest rockshelter El Trébol (Northwest Patagonia, Argentina). Current Research in Pleitocene 23, (2006). 5557.Google Scholar
Hammer, O., Harper, D.A.P., and Ryan, P.D. PAST: paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4, (2001). 19.Google Scholar
Heusser, C.J. Ice age southern Andes: a chronicle of palaeoecological events. Developments in Quaternary Science vol. 3, (2003). Elsevier, Amsterdam.Google Scholar
Heusser, L., Heusser, C., Mix, A., and McManus, J. Chilean and Southeast Pacific paleoclimate varietions during the last glacial cycle: directly correlated pollen and δ18O records from ODP Site 1234. Quaternary Science Reviews 25, (2006). 34043415.Google Scholar
Himes, C.M.T., Gallardo, M.H., and Kenagy, G.K. Historical biogeography and post-glacial recolonization of South American temperate rain forest by the relictual marsupial Dromiciops gliroides. Journal of Biogeography 35, (2008). 14151424.CrossRefGoogle Scholar
Hoganson, J., and Ashworth, A. Fossil beetle evidence for climatic change 18,000–10,000 years BP in south-central Chile. Quaternary Research 37, (1992). 101116.Google Scholar
Hogg, A., Hua, Q., Blackwell, P., Niu, M., Buck, C., Guilderson, T., Heaton, T., Palmer, J., Reimer, P., Reimer, R., Turney, C., and Zimmerman, S. SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, (2013). 18891903.Google Scholar
Hulton, N., Purves, R., McCulloch, R., Sugden, D., and Bentley, M. The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 21, (2002). 233241.Google Scholar
León, R.J.C., Bran, D., Collantes, M., Paruelo, J.M., and Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8, (1998). 125144.Google Scholar
Lessa, E.P., Cook, J.A., and Patton, J.L. Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proceedings of the National Academy of Sciences 100, (2003). 1033110334.Google Scholar
Lessa, E.P., D'Elía, G., and Pardiñas, U.F.J. Genetic footprints of late Quaternary climate change in the diversity of Patagonian–Fueguian rodents. Molecular Ecology 19, (2010). 30313037.Google Scholar
Markgraf, V., and Bianchi, M.M. Paleoenvironmental changes during the last 17,000 years in western Patagonia: Mallín Aguado, province of Neuquén, Argentina. Bamberg Geographische Schriften 19, (1999). 175193.Google Scholar
Markgraf, V., Webb, R.S., Anderson, K.H., and Anderson, L. Modern pollen/climate calibration for southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology 181, (2002). 375397.Google Scholar
Mathiasen, P., and Premoli, A.C. Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Molecular Ecology 19, (2010). 371385.Google Scholar
McCulloch, R.D., Bentley, M.J., Purves, R.S., Hulton, N.R.J., Sudgen, D.E., and Clapperton, C.M. Climatic inferences from glacial and palaeoecological evidences at the last glacial termination, southern South America. Journal of Quaternary Science 15, (2000). 409417.Google Scholar
Monjeau, J., Sikes, R., Birney, E., Guthmann, N., and Phillips, C. Small mammal community composition within the major landscape divisions of Patagonia, southern Argentina. Mastozoología Neotropical 4, (1997). 113127.Google Scholar
Moreno, P. Vegetation and climate bear Lago Llanquihue in the Chilean Lake District between 20,200 and 9500 14C yr BP. Journal of Quaternary Science 12, (1997). 485500.Google Scholar
Musser, G.G., and Carleton, M.D. Superfamily Muroidea. Wilson, D.E., and Reeder, D.M. Mammal Species of the World: A Taxonomic and Geographic Reference. (2005). Johns Hopkins University Press, Maryland. 8941531.Google Scholar
Ortiz, P.E., Madozzo Jaén, M.C., and Jayat, J.P. Micromammals and paleoenvironments: climatics oscillations in the Monte desert of Catamarca (Argentina) during the last two millenia. Journal of Arid Environments 77, (2011). 103109.CrossRefGoogle Scholar
Overpeck, J.T., Webb, T., and Prentice, I.C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23, (1985). 87108.Google Scholar
Palma, R.E., Boric-Bargetto, D., Torres-Pérez, F., Hernández, C.E., and Yates, T.L. Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes. PLoS ONE 7, (2012). e32206 Google Scholar
Pardiñas, U.F.J. Los roedores muroideos del Pleistoceno Tardío-Holoceno en la región pampeana (sector este) y Patagonia (República Argentina): aspectos taxonómicos, importancia bioestratigráfica y significación paleoambiental. (Ph.D. thesis) (1999). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata.Google Scholar
Pardiñas, U.F.J. Tafonomía de microvertebrado en yacimientos arqueológicos de Patagonia (Argentina). Arqueología 9, (1999). 265308.Google Scholar
Pardiñas, U.F.J., and Cirignoli, S. Bibliografía comentada sobre los análisis de egagrópilas de aves rapaces en Argentina. Ornitologia Neotropical 13, (2002). 3159.Google Scholar
Pardiñas, U.F.J., and Massoia, E. Roedores y marsupiales de Cerro Castillo, Paso Flores, Departamento Pilcaniyeu, provincia de Río Negro. Boletín Científico, Asociación para la Protección de la Naturaleza 13, (1989). 913.Google Scholar
Pardiñas, U.F.J., and Teta, P. Small mammals and paleoenvironments around the Pleistocene–Holocene boundary in Patagonia. Current Research in the Pleistocene 25, (2008). 3032.Google Scholar
Pardiñas, U.F.J., and Teta, P. Holocene stability and recent dramatic change in micromammalian communities of northwestern Patagonia. Quaternary International 305, (2013). 127140.Google Scholar
Pardiñas, U.F.J., Teta, P., Cirignoli, S., and Podestá, D.H. Micromamíferos (Didelphimorphia y Rodentia) de norpatagonia extra andina, Argentina: taxonomía alfa y biogeografía. Mastozoología Neotropical 10, (2003). 69113.Google Scholar
Pardiñas, U.F.J., Teta, P., Chebez, J.C., Martinez, F., Ocampo, S., and Navas, D. Mammalia, Rodentia, Sigmodontinae, Euneomys chinchilloides (Waterhouse, 1837): range extension. Check List, Journal of Species List and Distribution 6, (2010). 167169.Google Scholar
Pardiñas, U.F.J., Teta, P., D'Elia, G., and Lessa, E.P. The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biological Journal of the Linnean Society 103, (2011). 495513.Google Scholar
Pastorino, M.J., Marchelli, P., Milleron, M., Soliani, C., and Gallo, L.A. The effect of different glaciation patterns over the current genetic structure of the southern beech Nothofagus antarctica. Genetica 136, (2009). 7988.Google Scholar
Pearson, O.P. Characteristics of a mammalian fauna from forests in Patagonia, southern Argentina. Journal of Mammalogy 64, (1983). 476492.Google Scholar
Pearson, O.P. Taxonomy and natural history of some fossorial rodents of Patagonia, southern Argentina. Journal of Zoology 202, (1984). 225237.Google Scholar
Pearson, O.P. Mice and the postglacial history of the Traful Valley of Argentina. Journal of Mammalogy 68, (1987). 469478.Google Scholar
Pearson, O.P. Annotated key for identifyng small mammals living in or near Nahuel Huapi National Park or Lanin National Park, southern Argentina. Mastozoología Neotropical 2, (1995). 99148.Google Scholar
Pearson, O.P., and Pearson, A.K. Ecology and biogeography of the southestern rainforests of Argentina. Mares, M.A., and Genoways, H.H. Mammalian Biology in South America. Pennsylvania, Pymatuning Lab. Ecol., Special Publ. No. 6 (1982). 129142.Google Scholar
Pearson, O.P., and Pearson, A.K. La fauna de mamíferos pequeños de Cueva Traful I, Argentina: pasado y presente. Præhistoria 1, (1993). 211224.Google Scholar
Porter, S. Pleistocene glaciation in the southern Lake District of Chile. Quaternary Research 16, (1981). 263292.Google Scholar
Premoli, A.C., Kitzberger, T., and Veblen, T. Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. Journal of Biogeography 27, (2000). 251260.Google Scholar
Rabassa, J. Late Cenozoic of Patagonia and Tierra del Fuego. Developments in Quaternary Sciences vol. 11, (2008). Elsevier, Amsterdam.Google Scholar
Rabassa, J., Coronato, A., and Martínez, O. Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biological Journal of the Linnean Society 103, (2011). 316335.Google Scholar
Rebane, K. The effects of historic climatic change and anthopogenic disturbance on rodent communities in Patagonia, Argentina. (Honors thesis) (2002). Stanford University, Menlo Park, CA.Google Scholar
Reise, D., and Venegas, W. Catalogue of records, localities and biotopes from research work on small mammals in Chile and Argentina. Gayana: Zoología 51, (1987). 103130.Google Scholar
Rice, W.R. Analyzing tables of statistical tests. Evolution 43, (1989). 223225.Google Scholar
Schmitt, D.N., and Lupo, K.D. The Bonneville Estates Rockshelter rodent fauna and changes in Late Pleistocene–Middle Holocene climates and biogeography in the Northern Bonneville Basin, USA. Quaternary Research 78, (2012). 95102.Google Scholar
Smith, M.F., Kelt, D.A., and Patton, J.L. Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Molecular Ecology 10, (2001). 397405.CrossRefGoogle ScholarPubMed
Stahl, P.W. The recovery and interpretation of microvertebrate bone addemblages from arcaeological contexts. Journal of Archaeological Method and Theory 3, (1996). 3175.Google Scholar
Taguchi, Y., and Oono, Y. Relational patterns of gene expression via non-metric multidimentional scaling analysis. Bioinformatics 21, (2005). 730740.Google Scholar
Tammone, M.N., Lacey, E.A., and Relva, M.A. Habitat use by colonial tuco-tucos (Ctenomys sociabilis): specialization, variation, and sociality. Journal of Mammalogy 93, (2012). 14091419.Google Scholar
Tatur, A., del Valle, R., Bianchi, M.M., Outes, V., Villarosa, G., Niegodzisz, J., and Debaen, G. Late Pleistocene palaeolakes in the Andean and Extra-Andean Patagonia at mid-latitudes of South America. Quaternary International 89, (2002). 135150.Google Scholar
Taylor, I. Barn Owls. (1994). Cambridge University Press, Cambridge.Google Scholar
Terry, R.C. Inferring predator identity from skeletal damage of small-mammal prey remains. Evolutionary Ecology Research 9, (2007). 199219.Google Scholar
Terry, R.C. On raptors and rodents: testing the ecological fidelity and spatiotemporal resolution of cave death assemblages. Paleobiology 36, (2010). 137160.Google Scholar
Terry, R.C. The dead do not lie: using skeletal remains for rapid assessment of historical small-mammal community baselines. Proceedings of the Royal Society B 277, (2010). 11931201.Google Scholar
Terry, R.C., Cheng, L., and Hadly, E.A. Predicting small-mammal responses to climatic warming: autoecology, geographic range, and the Holocene fossil record. Global Change Biology 17, (2011). 30193034.Google Scholar
Teta, P., Andrade, A., and Pardiñas, U.F.J. Micromamíferos (Didelphimorphia y Rodentia) y paleoambientes del Holoceno tardío en la Patagonia noroccidental extra-andina (Argentina). Archeofauna 14, (2005). 183197.Google Scholar
Tonni, E., and Carlini, A. Neogene vertebrates from Argentine Patagonia: their relationship with the most significant climatic changes. Rabassa, J. Late Cenozoic of Patagonia and Tierra del Fuego. Developments in Quaternary Science vol. 11, (2008). Elsevier, Amsterdam. 269283.Google Scholar
Travaini, A., Donázar, J.A., Ceballos, O., Rodríguez, A., Hiraldo, F., and Delibes, M. Food habits of common Barn Owls along an elevational gradient in Andean Argentine Patagonia. Journal of Raptor Research 31, (1997). 5964.Google Scholar
Trejo, A. Segregation by size at the individual prey level between Barn and Magellanic Horned Owls in Argentina. Journal of Raptor Research 40, (2006). 168172.CrossRefGoogle Scholar
Trejo, A., and Lambertucci, S. Feeding habits of Barn Owls along vegetative gradient in northern Patagonia. Journal of Raptor Research 41, (2007). 277287.Google Scholar
Trejo, A., and Ojeda, V. Diet of Barn Owls (Tyto alba) in forested habitats of northwestern Argentine Patagonia. Ornitología Neotropical 15, (2004). 307311.Google Scholar
Trejo, A., Guthmann, N., and Lozada, M. Seasonal selectivity of Magellanic Horned Owl (Bubo magellanicus) on rodents. European Journal of Wildlife Research 51, (2005). 185190.Google Scholar
Trejo, A., Kun, M., Sahores, M., and Seijas, S. Diet overlap and prey size of two owls in the forest-steppe ecotono of southern Argentina. Ornitologia Neotropical 16, (2005). 539546.Google Scholar
Turchetto-Zolet, A.C., Pinheiro, F., Salgueiro, F., and Palma-Silva, C. Phylogeographical patterns shed light on evolutionary process in South America. Molecular Ecology 22, (2013). 11931213.Google Scholar
Udrizar Sauthier, D.E., Andrade, A., and Pardiñas, U.F.J. Predation of small mammals by Rufous-Legged Owl, Barn Owl, and Magellanic Horned Owl in Argentinean Patagonia forests. Journal of Raptor Research 39, (2005). 163166.Google Scholar
Supplementary material: File

Tammone et al. supplementary material

Table S1

Download Tammone et al. supplementary material(File)
File 105 KB
Supplementary material: File

Tammone et al. supplementary material

Table S2

Download Tammone et al. supplementary material(File)
File 49.2 KB
Supplementary material: File

Tammone et al. supplementary material

Table S3

Download Tammone et al. supplementary material(File)
File 64.5 KB
Supplementary material: File

Tammone et al. supplementary material

Table S4

Download Tammone et al. supplementary material(File)
File 55.3 KB