Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T17:30:23.170Z Has data issue: false hasContentIssue false

A non-noble Cr–Ni-based catalyst for the oxygen reduction reaction in alkaline polymer electrolyte fuel cells

Published online by Cambridge University Press:  30 January 2018

P. Faubert*
Affiliation:
Department of Microsystems Engineering IMTEK, Laboratory for Process Technology, University of Freiburg, D-79110 Freiburg, Germany
I. Kondov
Affiliation:
Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
D. Qazzazie
Affiliation:
Department of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, D-79110 Freiburg, Germany
O. Yurchenko
Affiliation:
University of Freiburg, Freiburg Materials Research Center FMF, D-79104 Freiburg, Germany
C. Müller
Affiliation:
Department of Microsystems Engineering IMTEK, Laboratory for Process Technology, University of Freiburg, D-79110 Freiburg, Germany
*
Address all correspondence to P. Faubert at patrick.faubert@imtek.uni-freiburg.de
Get access

Abstract

We report on a new type of polymer electrolyte fuel cell based on a hydroxide ion conductive polymer combined with a non-noble chromium–nickel (Cr–Ni) catalyst for the oxygen reduction reaction (ORR). We study variable fractions of Cr in Ni by density functional theory simulating the thermodynamic potentials characterizing the ORR. We found increased ORR catalytic activity employing the rotating disk electrode technique. The polarization curve and power densities measured for the constructed fuel cell indicate considerable performance improvement with the Cr–Ni catalyst. Thus we expect that this kind of fuel cell may open up alternative routes in fuel cell research using non-noble catalysts.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jacobson, M.Z., Colella, W.G., and Golden, D.M.: Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science (New York, N.Y.) 308, 19011905 (2005).Google Scholar
2. Steele, B.C. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345352 (2001).Google Scholar
3. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K.-I., and Iwashita, N.: Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 39043951 (2007).CrossRefGoogle ScholarPubMed
4. Bashyam, R. and Zelenay, P.: A class of non-precious metal composite catalysts for fuel cells. Nature 443, 6366 (2006).Google Scholar
5. Suo, Y., Zhuang, L., and Lu, J.: First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew. Chem. (Int. Ed. Engl.) 46, 28622864 (2007).Google Scholar
6. Sahu, A.K., Pitchumani, S., Sridhar, P., and Shukla, A.K.: Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: an overview. Bull. Mater. Sci. 32, 285294 (2009).Google Scholar
7. Satterfield, M.B. and Benziger, J.B.: Non-Fickian water vapor sorption dynamics by nafion membranes. J. Phys. Chem. B 112, 36933704 (2008).Google Scholar
8. Spohr, E.: Molecular dynamics simulations of proton transfer in a model nafion pore. Mol. Simul. 30, 107115 (2004).Google Scholar
9. Fan, X.: Mechanics of moisture for polymers: fundamental concepts and model study. EuroSimE 2008 – International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, Freiburg im Breisgau, 2008, pp. 1–14. doi: 10.1109/ESIME.2008.4525043.Google Scholar
10. Asazawa, K., Yamada, K., Tanaka, H., Oka, A., Taniguchi, M., and Kobayashi, T.: A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. (Int. Ed. Engl.) 46, 80248027 (2007).Google Scholar
11. Hibbs, M.R., Hickner, M.A., Alam, T.M., McIntyre, S.K., Fujimoto, C.H., and Cornelius, C.J.: Transport properties of hydroxide and proton conducting membranes. Chem. Mater. 20, 25662573 (2008).Google Scholar
12. Varcoe, J.R. and Slade, R.C.T.: Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5, 187200 (2005).Google Scholar
13. Agel, E., Bouet, J., and Fauvarque, J.: Characterization and use of anionic membranes for alkaline fuel cells. J. Power Sources 101, 267274 (2001).CrossRefGoogle Scholar
14. Yu, E.: Development of direct methanol alkaline fuel cells using anion exchange membranes. J. Power Sources 137, 248256 (2004).Google Scholar
15. Matsuoka, K., Iriyama, Y., Abe, T., Matsuoka, M., and Ogumi, Z.: Alkaline direct alcohol fuel cells using an anion exchange membrane. J. Power Sources 150, 2731 (2005).Google Scholar
16. Yang, D.-S., Bhattacharjya, D., Inamdar, S., Park, J., and Yu, J.-S.: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 134, 1612716130 (2012).Google Scholar
17. Liu, Z.-W., Peng, F., Wang, H.-J., Yu, H., Zheng, W.-X., and Yang, J.: Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. 123, 33153319 (2011).Google Scholar
18. Yang, W., Fellinger, T.-P., and Antonietti, M.: Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 133, 206209 (2011).Google Scholar
19. Keith, J.A., Jerkiewicz, G., and Jacob, T.: Theoretical investigations of the oxygen reduction reaction on Pt(111). Chemphyschem – Euro. J. Chem. Phys. Phys. Chem. 11, 27792794 (2010).Google Scholar
20. Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T., and Jónsson, H.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 1788617892 (2004).Google Scholar
21. Kondov, I., Faubert, P., and Müller, C.: Activity and electrochemical stability of a chromium modified nickel catalyst for oxygen reduction reaction. Electrochim. Acta 236, 260272 (2017).Google Scholar
22. Anderson, A.B., Jinnouchi, R., and Uddin, J.: Effective reversible potentials and onset potentials for O2 electroreduction on transition metal electrodes. J. Phys. Chem. C 117, 4148 (2013).Google Scholar
23. Kresse, G. and Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 1425114269 (1994).Google Scholar
24. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 1795317979 (1994).Google Scholar
25. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
26. Bard, A.J. and Faulkner, L.R. (eds): Electrochemical Methods: Fundamentals and Applications, 2nd ed. (Wiley, New York, 2001).Google Scholar
27. Haji, S.: Analytical modeling of PEM fuel cell i–V curve. Renew. Energy 36, 451458 (2011).Google Scholar
28. Motapon, S.N., Tremblay, O., and Dessaint, L.A.: Development of a generic fuel cell model. IJPELEC 4, 505 (2012).Google Scholar
29. Varcoe, J.R.: Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Phys. Chem. Chem. Phys. 9, 14791486 (2007).Google Scholar
30. Slade, R. and Varcoe, J.: Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes. Solid State Ion. 176, 585597 (2005).Google Scholar
31. Herman, H., Slade, R.C., and Varcoe, J.R.: The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation. J. Membr. Sci. 218, 147163 (2003).Google Scholar
32. Danks, T.N., Slade, R.C.T., and Varcoe, J.R.: Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells. J. Mater. Chem. 13, 712721 (2003).Google Scholar
Supplementary material: File

Faubert et al. supplementary material 1

Faubert et al. supplementary material

Download Faubert et al. supplementary material 1(File)
File 368.4 KB