Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T06:51:30.867Z Has data issue: false hasContentIssue false

Sol-Gel Process Derived Superhydrophobic Silica Thin Films for Antistiction of MEMS Devices

Published online by Cambridge University Press:  01 February 2011

ChingPing Wong
Affiliation:
cp.wong@mse.gatech.edu, Georgia Institute of Technology, School of Materials Science and Engineering, 771 Ferst Drive, Atlanta, GA, 30332, United States
Lingbo Zhu
Affiliation:
lzhu@chbe.gatech.edu, Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332, United States
Dennis W Hess
Affiliation:
dennis.hess@chbe.gatech.edu, Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332, United States
C. P. Wong
Affiliation:
cp.wong@mse.gatech.edu, Georgia Institute of Technology, Materials Science and Engineering, 771 Ferst Drive, Atlanta, GA, 30332, United States
Get access

Abstract

Based on the theory of superhydrophobicity for low surface energy coatings, we describe a superhydrophobic antistiction silica coating for MEMS devices. The process uses a novel sol-gel process sequence with a eutectic liquid as a templating agent. The eutectic liquid displays negligible vapor pressure and very low melting point (12°C at ambient conditions) to reduce solvent loss during the high speed spincoating process. After a fluoroalkyl silane treatment, superhydrophobicity is achieved on the as-prepared silica thin film. The solvent can be extracted after the gelation and aging processes. Spin speed effect, eutectic liquid:TEOS ratio in the solution were studied in order to optimize the surface roughness to ensure excellent super-hydrophobicity. Comparison of the silica thin films with silicon pillar surfaces showed that superhydrophobicity for the traditional sol-gel derived silica films demonstrated significant improvement, especially under humid conditions. The AFM force curve obtained with a tipless probe showed that the interaction force is greatly reduced on a rough silica superhydrophobic surface. This result offers great potential to reduce stiction failures in MEMS devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Xiu, Y., Zhu, L., Hess, D., and Wong, C. P., “US patent pending,” 2006.Google Scholar
2 Barthlott, W. and Neinhuis, C., Planta, vol. 202, pp. 18, 1997.Google Scholar
3 Wu, X. F. and Shi, G. Q., Nanotechnology, vol. 16, pp. 20562060, 2005.Google Scholar
4 Guo, Z.-G., Zhou, F., Hao, J.-C., Liang, Y.-M., Liu, W.-M., and Huck, W. T. S., Applied Physics Letters, vol. 89, pp. 081911/1–081911/3, 2006.Google Scholar
5 Xiu, Y., Zhu, L., Hess, D. W., and Wong, C. P., Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26-30, 2006, pp. IEC196, 2006.Google Scholar
6 Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T., Advanced Materials, vol. 11, pp. 13651368, 1999.Google Scholar
7 Duparre, A., Flemming, M., Steinert, J., and Reihs, K., Applied Optics, vol. 41, pp. 32943298, 2002.Google Scholar
8 Wang, S. T., Feng, L., and Jiang, L., Advanced Materials, vol. 18, pp. 767-+, 2006.Google Scholar
9 Zhu, L., Xiu, Y., Xu, J., Hess, D. W., and Wong, C. P., presented at Electronic Components and Technology Conference, San Diego, CA, 2006.Google Scholar
10 Zhai, L., Cebeci, F. C., Cohen, R. E., and Rubner, M. F., Nano Letters, vol. 4, pp. 13491353, 2004.Google Scholar
11 Jisr, R. M., Rmaile, H. H., and Schlenoff, J. B., Angewandte Chemie, International Edition, vol. 44, pp. 782785, 2005.Google Scholar
12 Ma, M. L., Mao, Y., Gupta, M., Gleason, K. K., and Rutledge, G. C., Macromolecules, vol. 38, pp. 97429748, 2005.Google Scholar
13 Ma, M. L., Hill, R. M., Lowery, J. L., Fridrikh, S. V., and Rutledge, G. C., Langmuir, vol. 21, pp. 55495554, 2005.Google Scholar
14 Zhu, L. B., Xiu, Y. H., Xu, J. W., Tamirisa, P. A., Hess, D. W., and Wong, C. P., Langmuir, vol. 21, pp. 1120811212, 2005.Google Scholar
15 Sun, T., Wang, G. J., Liu, H., Feng, L., Jiang, L., and Zhu, D. B., Journal of the American Chemical Society, vol. 125, pp. 1499614997, 2003.Google Scholar
16 Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H., and Gleason, K. K., Nano Letters, vol. 3, pp. 17011705, 2003.Google Scholar
17 Oner, D. and McCarthy, T. J., Langmuir, vol. 16, pp. 77777782, 2000.Google Scholar
18 Liu, H., Feng, L., Zhai, J., Jiang, L., and Zhu, D. B., Langmuir, vol. 20, pp. 56595661, 2004.Google Scholar
19 Love, J. C., Gates, B. D., Wolfe, D. B., Paul, K. E., and Whitesides, G. M., Nano Letters, vol. 2, pp. 891894, 2002.Google Scholar
20 Xiu, Y., Zhu, L., Hess, D. W., and Wong, C. P., Langmuir, vol. 22, pp. 96769681, 2006.Google Scholar
21 Ashurst, W. R., Yau, C., Carraro, C., Lee, C., Kluth, G. J., Howe, R. T., and Maboudian, R., Sensors and Actuators a-Physical, vol. 91, pp. 239248, 2001.Google Scholar
22 Mastrangelo, C. H. and Hsu, C. H., Journal of Microelectromechanical Systems, pp. 3343, 1993.Google Scholar
23 Mastrangelo, C. H. and Hsu, C. H., Journal of Microelectromechanical Systems, pp. 4455, 1993.Google Scholar
24 Kulkarni, S. A., Mirji, S. A., Mandale, A. B., and Vijayamohanan, K. P., Thin Solid Films, vol. 496, pp. 420425, 2006.Google Scholar
25 Lee, C. C. and Hsu, W., Journal of Vacuum Science & Technology B, vol. 21, pp. 15051510, 2003.Google Scholar
26 Cooper, E. R., Andrews, C. D., Wheatley, P. S., Webb, P. B., Wormald, P., and Morris, R. E., Nature (London, United Kingdom), vol. 430, pp. 10121016, 2004.Google Scholar
27 Cheng, Y. T., Rodak, D. E., Angelopoulos, A., and Gacek, T., Applied Physics Letters, vol. 87, pp. -, 2005.Google Scholar
28 Wier, K. A. and McCarthy, T. J., Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States, Aug. 28-Sept. 1, 2005, pp. COLL147, 2005.Google Scholar
29 Wier, K. A. and McCarthy, T. J., Langmuir, vol. 22, pp. 24332436, 2006.Google Scholar
30 Adamson, A. W. G., Alice, P., Physical chemistry of surfaces, 6th Translator: Gast, Alice P. ISBN: 0471148733 (alk. paper) Reprint Edition: 6th, 1997.Google Scholar